logo

Necessary and Sufficient Conditions for Riemann(-Stieltjes) Integrability 📂Analysis

Necessary and Sufficient Conditions for Riemann(-Stieltjes) Integrability

This article is based on the Riemann-Stieltjes integral. If we set α=α(x)=x\alpha=\alpha (x)=x, it is the same as Riemann integral.

Theorem1

A necessary and sufficient condition for a function ff to be Riemann(-Stieltjes) integrable on [a,b][a,b] is that for every ϵ>0\epsilon >0, there exists a partition PP of [a,b][a,b] that satisfies U(P,f,α)L(P,f,α)<ϵU(P,f,\alpha) - L(P,f,\alpha) < \epsilon.

fR(α) on [a,b]    ϵ>0,P s.t. U(P,f,α)L(P,f,α)<ϵ \begin{equation} f \in \mathscr{R} (\alpha) \text{ on } [a,b] \\ \iff \forall\epsilon >0, \exists P\text{ s.t. } U(P,f,\alpha) - L(P,f,\alpha) < \epsilon \end{equation}


This condition is practically used when proving integrability.

Proof

Given the assumptions below:

  • f:[a,b]Rf : [a,b] \to \mathbb{R} is bounded.
  • α:[a,b]R\alpha : [a,b] \to \mathbb{R} is a monotonically increasing function.
  • PP is referred to as a partition of [a,b][a,b].

  • (    )(\implies)

    Suppose ff is a Riemann(-Stieltjes) integrable function and ϵ>0\epsilon > 0 is given. By the definition of lower and upper integration, for every partition PP, the following holds.

    L(P,f,α)abfdα=abfdα L(P,f,\alpha) \le \underline{\int _{a}^{b}} f d\alpha = \int _{a} ^{b} f d\alpha

    Therefore, there exists a partition P1P_{1} that satisfies:

    abfdαL(P1,f,α)<ϵ2 \begin{equation} \int _{a} ^{b} f d\alpha - L(P_{1},f,\alpha) < \frac{\epsilon}{2} \end{equation}

    Similarly, the following is true.

    abfdα=abfdαU(P,f,α) \int _{a} ^{b} f d\alpha = \overline {\int _{a} ^{b}} f d\alpha \le U(P,f,\alpha)

    Thus, there exists a partition P2P_{2} that satisfies:

    U(P2,f,α)abfdα<ϵ2 \begin{equation} U(P_2,f,\alpha) - \int _{a}^{b} f d\alpha < \frac{\epsilon}{2} \end{equation}

    Now, let’s call PP^{\ast} the common refinement of P1P_{1} and P2P_{2}. Then, since the refinement of the upper(sum) or lower(sum) is smaller(or larger) than the partition, by (2)(2), (3)(3), the following holds.

    U(P,f,α)U(P2,f,α)<abfdα+ϵ2<L(P1,f,α)+ϵ2+ϵ2=L(P1,f,α)+ϵL(P,f,α)+ϵ \begin{align*} U(P^{\ast},f,\alpha) &\le U(P_2,f,\alpha) \\ &\lt {\color{blue}\int _{a} ^{b} f d\alpha} + \frac{\epsilon}{2} \\ &\lt {\color{blue} L(P_{1},f,\alpha) + \frac{\epsilon}{2} } + \frac{\epsilon}{2} \\ &= L(P_{1},f,\alpha) + \epsilon \\ &\le L(P^{\ast},f,\alpha) + \epsilon \end{align*}

    Therefore, there exists a partition PP^{\ast} that satisfies U(P,f,α)L(P,f,α)<ϵU(P^{\ast},f,\alpha)-L(P^{\ast},f,\alpha) < \epsilon.

  • (    )(\impliedby)

    Assume for all ϵ>0\epsilon >0, there exists a partition PP of [a,b][a,b] that satisfies U(P,f,α)L(P,f,α)<ϵU(P,f,\alpha) - L(P,f,\alpha) < \epsilon. By the definition of upper and lower integration, the following equation holds.

    L(P,f,α)abfdαabfdαU(P,f,α) L(P,f,\alpha) \le \underline {\int _{a} ^{b}} f d\alpha \le \overline{ \int _{a} ^{b}}f d\alpha \le U(P,f,\alpha)

    If A<B<C<DA<B<C<D, then CB<DAC-B<D-A. Thus, using the assumption and the above equation, we obtain:

    0abfdαabfdα<ϵ 0 \le \overline {\int _{a}^{b}} f d\alpha -\underline{\int _{a} ^{b}} f d\alpha < \epsilon

    For this to be true for all positive numbers ϵ\epsilon, the following must hold:

    abfdαabfdα=0 \overline {\int _{a}^{b}} f d\alpha -\underline{\int _{a} ^{b}} f d\alpha=0

    Therefore, the following is true, and it is the definition of integrability for ff, meaning ff is integrable.

    abfdα=abfdα \overline {\int _{a}^{b}} f d\alpha =\underline{\int _{a} ^{b}} f d\alpha

Corollaries2

  • (a) If for some partition PP and ε>0\varepsilon >0, (1)(1) holds, then (1)(1) also holds for all refinements of PP.

  • (b) If for a partition P={x0,,xn}P=\left\{ x_{0},\cdots,x_{n} \right\}, (1)(1) holds and we denote it by si,ti[xi1,xi]s_{i},t_{i}\in [x_{i-1},x_{i}], then the following inequality is true. i=1nf(si)f(ti)Δαi<ε \sum \limits _{i=1} ^{n} \left| f(s_{i}) -f(t_{i}) \right| \Delta \alpha_{i} <\varepsilon

  • (c) If ff is integrable and the assumption of (b) holds, then the following formula is true. i=1nf(ti)Δαiabf(x)dα(x)<ε \left| \sum \limits _{i=1} ^{n} f(t_{i})\Delta \alpha_{i} - \int _{a} ^{b}f (x)d\alpha (x) \right| < \varepsilon

Proof

(a)

Let’s call PP^{\ast} a refinement of PP. Then, by the properties of refinements, the following holds.

U(P,f,α)L(P,f,α)<U(P,f,α)L(P,f,α)<ε U(P^{\ast},f,\alpha) -L(P^{\ast},f,\alpha)<U(P,f,\alpha) -L(P,f,\alpha) <\varepsilon

Thus, (a) is true.

(b)

Let’s denote the following for x[xi1,xi]x\in[x_{i-1},x_{i}]:

Mi=supf(x)andmi=inff(x) M_{i}=\sup f(x) \quad \text{and} \quad m_{i}=\inf f(x)

Then for all si,ti[xi1,xi]s_{i},t_{i}\in [x_{i-1},x_{i}], the following is true.

f(si)f(ti)<Mimi,i=1,,n \left| f(s_{i})-f(t_{i}) \right| < M_{i}-m_{i},\quad i=1,\cdots,n

Therefore, by the definition of upper and lower sum, the following holds.

i=1nf(si)f(ti)Δαi<i=1n(Mimi)Δαi=U(P,f,α)L(P,f,α)<ε \begin{align*} \sum \limits _{i=1} ^{n} \left| f(s_{i})-f(t_{i}) \right| \Delta \alpha_{i} &< \sum \limits _{i=1} ^{n}(M_{i}-m_{i})\Delta \alpha_{i} \\ &=U(P,f,\alpha)-L(P,f,\alpha) \\ &< \varepsilon \end{align*}

(c)

Continuing with the notation used in the previous proofs, it is self-evident by the definition of upper and lower sums that the following is true.

L(P,f,α)i=1nf(ti)ΔαiU(P,f,α) L(P,f,\alpha) \le \sum \limits _{i=1} ^{n} f(t_{i})\Delta \alpha_{i} \le U(P,f,\alpha)

Also, by the definition of integration, the following is obviously true.

L(P,f,α)abf(x)dα(x)U(P,f,α) L(P,f,\alpha) \le \int _{a} ^{b} f(x)d\alpha (x) \le U(P,f,\alpha)

Therefore, by the above two formulas, the following is true.

i=1nf(ti)Δαiabf(x)dα(x)<ε \left| \sum \limits _{i=1} ^{n} f(t_{i})\Delta \alpha_{i} - \int _{a} ^{b}f (x)d\alpha (x) \right| < \varepsilon


  1. Walter Rudin, Principles of Mathematical Analysis (3rd Edition, 1976), p124-125 ↩︎

  2. Walter Rudin, Principles of Mathematical Analysis (3rd Edition, 1976), p125 ↩︎