Proof of Cramer's Rule
📂Matrix Algebra Proof of Cramer's Rule Overview Cramer’s Rule is not efficient for solving systems of equations, but if A j A_{j} A j is an invertible matrix or A A A itself is given under conditions that make it convenient to calculate determinants, it can be sufficiently useful to directly find the necessary answers.
Theorem Let’s assume the system of equations A x = b A \mathbf{x} = \mathbf{b} A x = b consists of an invertible matrix
A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ]
A = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n}
\\ a_{21} & a_{22} & \cdots & a_{2n}
\\ \vdots & \vdots & \ddots & \vdots
\\ a_{n1} & a_{n2} & \cdots & a_{nn}
\end{bmatrix}
A = a 11 a 21 ⋮ a n 1 a 12 a 22 ⋮ a n 2 ⋯ ⋯ ⋱ ⋯ a 1 n a 2 n ⋮ a nn
and two vectors
x = [ x 1 x 2 ⋮ x n ] , b = [ b 1 b 2 ⋮ b n ]
\mathbf{x} = \begin{bmatrix}
x_{1}
\\ x_{2}
\\ \vdots
\\ x_{n}
\end{bmatrix}, \mathbf{b} = \begin{bmatrix}
b_{1}
\\ b_{2}
\\ \vdots
\\ b_{n}
\end{bmatrix}
x = x 1 x 2 ⋮ x n , b = b 1 b 2 ⋮ b n
. Then, if we replace the j j j -th column of A A A with b \mathbf{b} b , the matrix is called A j A_{j} A j ,
x j = det A j det A
x_{j} = {{ \det A_{j} } \over { \det A }}
x j = det A det A j
Proof Let’s call the cofactor of A A A of i , j i,j i , j as C i j C_{ij} C ij .
For the selected j j j th column, det A = ∑ j = 1 n a i j C i j \displaystyle \det A = \sum_{j=1}^{n} a_{ij} C_{ij} det A = j = 1 ∑ n a ij C ij
Since the j j j th column of A A A is a 1 j , a 2 j , ⋯ , a n j a_{1j} , a_{2j} , \cdots , a_{nj} a 1 j , a 2 j , ⋯ , a nj , based on the Laplace expansion ,
det A = a 1 j C 1 j + a 2 j C 2 j + ⋯ + a n j C n j
\det A = a_{1j} C_{1j} + a_{2j} C_{2j} + \cdots + a_{nj} C_{nj}
det A = a 1 j C 1 j + a 2 j C 2 j + ⋯ + a nj C nj
Meanwhile, the k ≠ j k \ne j k = j column of A A A is a 1 k , a 2 k , ⋯ , a n k a_{1k} , a_{2k} , \cdots , a_{nk} a 1 k , a 2 k , ⋯ , a nk , and a 1 k C 1 j + a 2 k C 2 j + ⋯ + a n k C n j a_{1k} C_{1j} + a_{2k} C_{2j} + \cdots + a_{nk} C_{nj} a 1 k C 1 j + a 2 k C 2 j + ⋯ + a nk C nj is equal to the determinant of the matrix with at least two identical columns of a 1 k , a 2 k , ⋯ , a n k a_{1k} , a_{2k} , \cdots , a_{nk} a 1 k , a 2 k , ⋯ , a nk ,
a 1 k C 1 j + a 2 k C 2 j + ⋯ + a n k C n j = 0
a_{1k} C_{1j} + a_{2k} C_{2j} + \cdots + a_{nk} C_{nj} = 0
a 1 k C 1 j + a 2 k C 2 j + ⋯ + a nk C nj = 0
Breaking down the system of equations A x = b A \mathbf{x} = \mathbf{b} A x = b ,
a 11 x 1 + a 12 x 2 + ⋯ + a 1 j x j + ⋯ + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + ⋯ + a 2 j x j + ⋯ + a 2 n x n = b 2 ⋮ a n 1 x 1 + a n 2 x 2 + ⋯ + a n j x j + ⋯ + a n n x n = b n
\begin{align*}
a_{11} x_{1} + a_{12} x_{2} + \cdots + a_{1j} x_{j} + \cdots + a_{1n} x_{n} =& b_{1}
\\ a_{21} x_{1} + a_{22} x_{2} + \cdots + a_{2j} x_{j} + \cdots + a_{2n} x_{n} =& b_{2}
\\ &\vdots
\\ a_{n1} x_{1} + a_{n2} x_{2} + \cdots + a_{nj} x_{j} + \cdots + a_{nn} x_{n} =& b_{n}
\end{align*}
a 11 x 1 + a 12 x 2 + ⋯ + a 1 j x j + ⋯ + a 1 n x n = a 21 x 1 + a 22 x 2 + ⋯ + a 2 j x j + ⋯ + a 2 n x n = a n 1 x 1 + a n 2 x 2 + ⋯ + a nj x j + ⋯ + a nn x n = b 1 b 2 ⋮ b n
By multiplying both sides of each i i i th equation by C i j C_{ij} C ij ,
a 11 x 1 C 1 j + a 12 x 2 C 1 j + ⋯ + a 1 j x j C 1 j + ⋯ + a 1 n x n C 1 j = b 1 C 1 j a 21 x 1 C 2 j + a 22 x 2 C 2 j + ⋯ + a 2 j x j C 2 j + ⋯ + a 2 n x n C 2 j = b 2 C 2 j ⋮ a n 1 x 1 C n j + a n 2 x 2 C n j + ⋯ + a n j x j C n j + ⋯ + a n n x n C n j = b n C n j
\begin{align*}
a_{11} x_{1} C_{1j} + a_{12} x_{2} C_{1j} + \cdots + a_{1j} x_{j} C_{1j} + \cdots + a_{1n} x_{n} C_{1j} =& b_{1} C_{1j}
\\ a_{21} x_{1} C_{2j} + a_{22} x_{2} C_{2j} + \cdots + a_{2j} x_{j} C_{2j}+ \cdots + a_{2n} x_{n} C_{2j} &= b_{2} C_{2j}
\\ &\vdots
\\ a_{n1} x_{1} C_{nj} + a_{n2} x_{2} C_{nj} + \cdots + a_{nj} x_{j} C_{nj} + \cdots + a_{nn} x_{n} C_{nj} &= b_{n} C_{nj}
\end{align*}
a 11 x 1 C 1 j + a 12 x 2 C 1 j + ⋯ + a 1 j x j C 1 j + ⋯ + a 1 n x n C 1 j = a 21 x 1 C 2 j + a 22 x 2 C 2 j + ⋯ + a 2 j x j C 2 j + ⋯ + a 2 n x n C 2 j a n 1 x 1 C nj + a n 2 x 2 C nj + ⋯ + a nj x j C nj + ⋯ + a nn x n C nj b 1 C 1 j = b 2 C 2 j ⋮ = b n C nj
Summing all the left sides, except for the middle’s ∑ i = 1 n a i j x j C i j = det A \displaystyle \sum_{i=1}^{n} a_{ij} x_{j} C_{ij} = \det A i = 1 ∑ n a ij x j C ij = det A , vanishes into ∑ i = 1 n a i k x j C i k = 0 \displaystyle \sum_{i=1}^{n} a_{ik} x_{j} C_{ik} = 0 i = 1 ∑ n a ik x j C ik = 0 ,
∑ i = 1 n a i j x j C i j = b 1 C 1 j + b 2 C 2 j + ⋯ + b n C n j
\sum_{i=1}^{n} a_{ij} x_{j} C_{ij} = b_{1} C_{1j} + b_{2} C_{2j} + \cdots + b_{n} C_{nj}
i = 1 ∑ n a ij x j C ij = b 1 C 1 j + b 2 C 2 j + ⋯ + b n C nj
is obtained. But since A j A_{j} A j is the matrix with the j j j th column replaced by b 1 , b 2 , ⋯ , b n b_{1} , b_{2} , \cdots , b_{n} b 1 , b 2 , ⋯ , b n ,
det A j = b 1 C 1 j + b 2 C 2 j + ⋯ + b n C n j
\det A_{j} = b_{1} C_{1j} + b_{2} C_{2j} + \cdots + b_{n} C_{nj}
det A j = b 1 C 1 j + b 2 C 2 j + ⋯ + b n C nj
Taking x j x_{j} x j out as ∑ i = 1 n \displaystyle \sum_{i=1}^{n} i = 1 ∑ n ,
x j ∑ i = 1 n a i j C i j = det A j
x_{j} \sum_{i=1}^{n} a_{ij} C_{ij} = \det A_{j}
x j i = 1 ∑ n a ij C ij = det A j
Therefore, summarizing it as x j det A = det A j \displaystyle x_{j} \det A = \det A_{j} x j det A = det A j , and since A A A is assumed to be an invertible matrix, det A ≠ 0 \det A \ne 0 det A = 0 is true. Therefore,
x j = det A j det A
x_{j} = {{ \det A_{j} } \over {\det A}}
x j = det A det A j
■