Reflexive of Vector Spaces
📂Linear Algebra Reflexive of Vector Spaces Definition If X X X is a vector space and X ∗ ∗ X^{\ast \ast} X ∗∗ is its bidual , then X X X is said to be reflexive if X ∗ ∗ ≈ X X^{\ast \ast} \approx X X ∗∗ ≈ X .
Explanation Generally, the size of a vector space increases with each dual taken. However, reflexivity essentially means that the dual space does not continue to grow. Examples of reflexive spaces include:
An introduction to the proof concerning ℓ p \ell^{p} ℓ p spaces.
Proof Strategy: Define the function sign : C → R \operatorname{sign} : \mathbb{C} \to \mathbb{R} sign : C → R specifically for this proof.
sign ( λ ) : = { ∣ λ ∣ λ , λ ≠ 0 1 , λ = 0
\operatorname{sign} ( \lambda ) := \begin{cases} \displaystyle {{| \lambda | } \over { \lambda }} &, \lambda \ne 0
\\ 1 &, \lambda = 0 \end{cases}
sign ( λ ) := ⎩ ⎨ ⎧ λ ∣ λ ∣ 1 , λ = 0 , λ = 0
By definition, λ sign ( λ ) = ∣ λ ∣ \lambda \operatorname{sign} (\lambda) = | \lambda | λ sign ( λ ) = ∣ λ ∣ . Note that this slightly differs from the widely used definition of the sign of a complex number sign \operatorname{sign} sign .
First, we will prove that for 1 p + 1 q = 1 \displaystyle {{1} \over {p}} + {{1} \over {q}} = 1 p 1 + q 1 = 1 , ℓ p ∗ ≈ ℓ q {\ell^{p}}^{ \ast } \approx \ell^{q} ℓ p ∗ ≈ ℓ q holds. Define the map ϕ : ℓ p ∗ → ℓ q \phi : {\ell^{p}}^{ \ast } \to \ell^{q} ϕ : ℓ p ∗ → ℓ q for f ∈ ℓ p ∗ f \in {\ell^{p}}^{ \ast } f ∈ ℓ p ∗ as ϕ ( f ) = ( f ( e 1 ) , f ( e 2 ) , … ) \phi (f) = \left( f(e_{1}) , f(e_{2}) , \dots \right) ϕ ( f ) = ( f ( e 1 ) , f ( e 2 ) , … ) , where e j e_{j} e j represents the unit vector e j : = ( … , 0 , 1 , 0 , … ) e_{j}:=(\dots ,0, 1 , 0 , \dots ) e j := ( … , 0 , 1 , 0 , … ) that is 1 1 1 in the j j j st component and 0 0 0 in others.
Now, define y j : = sign ( f q ( e j ) ) f q − 1 ( e j ) ( ∑ j = 1 n ∣ f ( e j ) ∣ q ) 1 p ∈ C \displaystyle y_{j} : = {{ \operatorname{sign} \left( f^q (e_{j} ) \right) f^{q-1} (e_{j} ) } \over { \left( \sum_{j=1}^{n} \left| f (e_{j} ) \right|^{q} \right)^{{{1} \over {p}}} }} \in \mathbb{C} y j := ( ∑ j = 1 n ∣ f ( e j ) ∣ q ) p 1 sign ( f q ( e j ) ) f q − 1 ( e j ) ∈ C containing y j : = sign ( f q ( e j ) ) f q − 1 ( e j ) ( ∑ j = 1 n ∣ f ( e j ) ∣ q ) 1 p ∈ C \displaystyle y_{j} : = {{ \operatorname{sign} \left( f^q (e_{j} ) \right) f^{q-1} (e_{j} ) } \over { \left( \sum_{j=1}^{n} \left| f (e_{j} ) \right|^{q} \right)^{{{1} \over {p}}} }} \in \mathbb{C} y j := ( ∑ j = 1 n ∣ f ( e j ) ∣ q ) p 1 sign ( f q ( e j ) ) f q − 1 ( e j ) ∈ C . Since for all λ ∈ C \lambda \in \mathbb{C} λ ∈ C , ∣ λ ∣ = 1 |\lambda| = 1 ∣ λ ∣ = 1 ,
∥ y 1 e 1 + ⋯ + y n e n ∥ p p = ∑ j = 1 n ∣ y j ∣ p = ∑ j = 1 n 1 ⋅ ∣ f ( e j ) ∣ ( q − 1 ) p ( ∑ j = 1 n ∣ f ( e j ) ∣ q )
\| y_{1} e_{1} + \dots + y_{n} e_{n} \|_{p}^{p} = \sum_{j=1}^{n} |y_{j}|^{p} = \sum_{j=1}^{n} {{ 1 \cdot \left| f (e_{j} ) \right|^{(q-1)p} } \over { \left( \sum_{j=1}^{n} \left| f (e_{j} ) \right|^{q} \right) }}
∥ y 1 e 1 + ⋯ + y n e n ∥ p p = j = 1 ∑ n ∣ y j ∣ p = j = 1 ∑ n ( ∑ j = 1 n ∣ f ( e j ) ∣ q ) 1 ⋅ ∣ f ( e j ) ∣ ( q − 1 ) p
it follows that ( q − 1 ) p = q (q-1)p = q ( q − 1 ) p = q ; therefore,
∥ y 1 e 1 + ⋯ + y n e n ∥ p p = 1
\| y_{1} e_{1} + \dots + y_{n} e_{n} \|_{p}^{p} = 1
∥ y 1 e 1 + ⋯ + y n e n ∥ p p = 1
Since f ∈ ℓ p ∗ f \in \ell_{p}^{ \ast } f ∈ ℓ p ∗ is linear,
f ( y 1 e 1 + ⋯ + y n e n ) = y 1 f ( e 1 ) + ⋯ + y n f ( e n ) = 1 ( ∑ j = 1 n ∣ f ( e j ) ∣ q ) 1 p ( sign ( f q ( e 1 ) ) f q − 1 ( e 1 ) f ( e 1 ) + ⋯ + sign ( f q ( e n ) ) f q − 1 ( e n ) f ( e n ) ) = 1 ( ∑ j = 1 n ∣ f ( e j ) ∣ q ) 1 p ( sign ( f q ( e 1 ) ) f q ( e 1 ) + ⋯ + sign ( f q ( e n ) ) f q ( e n ) )
\begin{align*}
& f( y_{1} e_{1} + \dots + y_{n} e_{n} )
\\ =& y_{1} f( e_{1} ) + \dots + y_{n} f(e_{n})
\\ =& {{ 1 } \over { \left( \sum_{j=1}^{n} \left| f (e_{j} ) \right|^{q} \right)^{{{1} \over {p}}} }} \left( \operatorname{sign} \left( f^q (e_{1} ) \right) f^{q-1} (e_{1} ) f(e_{1}) + \dots +\operatorname{sign} \left( f^q (e_{n} ) \right) f^{q-1} (e_{n} ) f(e_{n}) \right)
\\ =& {{ 1 } \over { \left( \sum_{j=1}^{n} \left| f (e_{j} ) \right|^{q} \right)^{{{1} \over {p}}} }} \left( \operatorname{sign} \left( f^q (e_{1} ) \right) f^{q} (e_{1} )+ \dots +\operatorname{sign} \left( f^q (e_{n} ) \right) f^{q} (e_{n} ) \right)
\end{align*}
= = = f ( y 1 e 1 + ⋯ + y n e n ) y 1 f ( e 1 ) + ⋯ + y n f ( e n ) ( ∑ j = 1 n ∣ f ( e j ) ∣ q ) p 1 1 ( sign ( f q ( e 1 ) ) f q − 1 ( e 1 ) f ( e 1 ) + ⋯ + sign ( f q ( e n ) ) f q − 1 ( e n ) f ( e n ) ) ( ∑ j = 1 n ∣ f ( e j ) ∣ q ) p 1 1 ( sign ( f q ( e 1 ) ) f q ( e 1 ) + ⋯ + sign ( f q ( e n ) ) f q ( e n ) )
λ sign ( λ ) = ∣ λ ∣ \lambda \operatorname{sign} (\lambda) = | \lambda | λ sign ( λ ) = ∣ λ ∣
Following the property of sign \operatorname{sign} sign ,
f ( y 1 e 1 + ⋯ + y n e n ) = 1 ( ∑ j = 1 n ∣ f ( e j ) ∣ q ) 1 p ( ∣ f ( e 1 ) ∣ q + ⋯ + ∣ f ( e n ) ∣ q ) = ( ∑ j = 1 n ∣ f ( e j ) ∣ q ) 1 − 1 p = ( ∑ j = 1 n ∣ f ( e j ) ∣ q ) 1 q
\begin{align*}
f( y_{1} e_{1} + \dots + y_{n} e_{n} ) =& {{ 1 } \over { \left( \sum_{j=1}^{n} \left| f (e_{j} ) \right|^{q} \right)^{{{1} \over {p}}} }} \left( \left| f (e_{1}) \right|^{q} + \dots + \left| f (e_{n}) \right|^{q} \right)
\\ =& \left( \sum_{j=1}^{n} \left| f(e_{j} ) \right|^{q} \right)^{1- {{1} \over {p}} }
\\ =& \left( \sum_{j=1}^{n} \left| f(e_{j} ) \right|^{q} \right)^{ {{1} \over {q}} }
\end{align*}
f ( y 1 e 1 + ⋯ + y n e n ) = = = ( ∑ j = 1 n ∣ f ( e j ) ∣ q ) p 1 1 ( ∣ f ( e 1 ) ∣ q + ⋯ + ∣ f ( e n ) ∣ q ) ( j = 1 ∑ n ∣ f ( e j ) ∣ q ) 1 − p 1 ( j = 1 ∑ n ∣ f ( e j ) ∣ q ) q 1
Part 1. ∣ ( ∑ j = 1 ∞ ∣ f ( e j ) ∣ q ) 1 q ∣ ≤ ∥ f ∥ \displaystyle \left| \left( \sum_{j=1}^{\infty} \left| f(e_{j} ) \right|^{q} \right)^{ {{1} \over {q}} } \right| \le \| f \| ( j = 1 ∑ ∞ ∣ f ( e j ) ∣ q ) q 1 ≤ ∥ f ∥
Since f f f is bounded, for all n ∈ N n \in \mathbb{N} n ∈ N ,
∣ ( ∑ j = 1 n ∣ f ( e j ) ∣ q ) 1 q ∣ ≤ ∥ f ∥ ∥ y 1 e 1 + ⋯ + y n e n ∥ p
\left| \left( \sum_{j=1}^{n} \left| f(e_{j} ) \right|^{q} \right)^{ {{1} \over {q}} } \right| \le \| f \| \| y_{1} e_{1} + \dots + y_{n} e_ {n} \|_{p}
( j = 1 ∑ n ∣ f ( e j ) ∣ q ) q 1 ≤ ∥ f ∥∥ y 1 e 1 + ⋯ + y n e n ∥ p
it follows from ∥ y 1 e 1 + ⋯ + y n e n ∥ p p = 1 \displaystyle \| y_{1} e_{1} + \dots + y_{n} e_{n} \|_{p}^{p} = 1 ∥ y 1 e 1 + ⋯ + y n e n ∥ p p = 1 that
∣ ( ∑ j = 1 ∞ ∣ f ( e j ) ∣ q ) 1 q ∣ ≤ ∥ f ∥
\left| \left( \sum_{j=1}^{\infty} \left| f(e_{j} ) \right|^{q} \right)^{ {{1} \over {q}} } \right| \le \| f \|
( j = 1 ∑ ∞ ∣ f ( e j ) ∣ q ) q 1 ≤ ∥ f ∥
Part 2. ϕ \phi ϕ is a function.
From Part 1., since ∣ ϕ ( f ) ∣ = ∣ ( ∑ j = 1 ∞ ∣ f ( e j ) ∣ q ) 1 q ∣ ≤ ∥ f ∥ < ∞ \displaystyle \left| \phi (f) \right| = \left| \left( \sum_{j=1}^{\infty} \left| f(e_{j} ) \right|^{q} \right)^{ {{1} \over {q}} } \right| \le \| f \| < \infty ∣ ϕ ( f ) ∣ = ( j = 1 ∑ ∞ ∣ f ( e j ) ∣ q ) q 1 ≤ ∥ f ∥ < ∞ , then ϕ ( f ) ∈ ℓ q \phi ( f ) \in \ell^{q} ϕ ( f ) ∈ ℓ q
Part 3. ϕ \phi ϕ is linear.
For f , g ∈ ℓ p ∗ f , g \in {\ell^{p}}^{ \ast } f , g ∈ ℓ p ∗ and λ ∈ C \lambda \in \mathbb{C} λ ∈ C ,
ϕ ( λ f + g ) = ( ( λ f + g ) e 1 , … ) = ( λ f ( e 1 ) + g ( e 1 ) , … ) = ( λ f ( e 1 ) , … ) + ( g ( e 1 ) , … ) = λ ϕ ( f ) + ϕ ( g )
\begin{align*}
\phi ( \lambda f + g ) =& \left( ( \lambda f + g ) e_{1} , \dots \right)
\\ =& \left( \lambda f (e_{1}) + g (e_{1}) , \dots \right)
\\ =&\left( \lambda f (e_{1}) , \dots \right) + \left( g (e_{1}) , \dots \right)
\\ =& \lambda \phi (f) + \phi (g)
\end{align*}
ϕ ( λ f + g ) = = = = ( ( λ f + g ) e 1 , … ) ( λ f ( e 1 ) + g ( e 1 ) , … ) ( λ f ( e 1 ) , … ) + ( g ( e 1 ) , … ) λ ϕ ( f ) + ϕ ( g )
Part 4. ϕ \phi ϕ is injective.
If for f , g ∈ ℓ p ∗ f , g \in {\ell^{p}}^{ \ast } f , g ∈ ℓ p ∗ , we say ϕ ( f ) = ϕ ( g ) \phi (f) = \phi (g) ϕ ( f ) = ϕ ( g ) , then for all j ∈ N j \in \mathbb{N} j ∈ N , f ( e j ) = g ( e j ) f(e_{j} ) = g( e_{j} ) f ( e j ) = g ( e j ) must hold. Let ( x j ) ∈ ℓ q ( x_{j} ) \in \ell^{q} ( x j ) ∈ ℓ q ,
f ( ( x j ) ) = f ( lim n → ∞ ( x 1 e 1 + ⋯ + x n e n ) )
f \left( ( x_{j} ) \right) = f \left( \lim_{n \to \infty} \left( x_{1} e_{1} + \dots + x_{n} e_{n} \right) \right)
f ( ( x j ) ) = f ( n → ∞ lim ( x 1 e 1 + ⋯ + x n e n ) )
Since ϕ \phi ϕ is linear, it is continuous ,
f ( lim n → ∞ ( x 1 e 1 + ⋯ + x n e n ) ) = lim n → ∞ f ( x 1 e 1 + ⋯ + x n e n ) = lim n → ∞ ( x 1 f ( e 1 ) + ⋯ + x n f ( e n ) ) = lim n → ∞ ( x 1 g ( e 1 ) + ⋯ + x n g ( e n ) ) = lim n → ∞ g ( x 1 e 1 + ⋯ + x n e n ) = g ( lim n → ∞ ( x 1 e 1 + ⋯ + x n e n ) ) = g ( ( x j ) )
\begin{align*}
f \left( \lim_{n \to \infty} \left( x_{1} e_{1} + \dots + x_{n} e_{n} \right) \right) =& \lim_{n \to \infty} f \left( x_{1} e_{1} + \dots + x_{n} e_{n} \right)
\\ =& \lim_{n \to \infty} \left( x_{1} f (e_{1} ) + \dots + x_{n} f(e_{n}) \right)
\\ =& \lim_{n \to \infty} \left( x_{1} g (e_{1} ) + \dots + x_{n} g (e_{n}) \right)
\\ =& \lim_{n \to \infty} g \left( x_{1} e_{1} + \dots + x_{n} e_{n} \right)
\\ =& g \left( \lim_{n \to \infty} \left( x_{1} e_{1} + \dots + x_{n} e_{n} \right) \right)
\\ =& g \left( ( x_{j} ) \right)
\end{align*}
f ( n → ∞ lim ( x 1 e 1 + ⋯ + x n e n ) ) = = = = = = n → ∞ lim f ( x 1 e 1 + ⋯ + x n e n ) n → ∞ lim ( x 1 f ( e 1 ) + ⋯ + x n f ( e n ) ) n → ∞ lim ( x 1 g ( e 1 ) + ⋯ + x n g ( e n ) ) n → ∞ lim g ( x 1 e 1 + ⋯ + x n e n ) g ( n → ∞ lim ( x 1 e 1 + ⋯ + x n e n ) ) g ( ( x j ) )
summarizing,
ϕ ( f ) = ϕ ( g ) ⟹ f = g
\phi (f) = \phi (g) \implies f = g
ϕ ( f ) = ϕ ( g ) ⟹ f = g
Part 5. ϕ \phi ϕ is surjective.
To show that for any ( λ j ) ∈ ℓ q ( \lambda_{j} ) \in \ell^{q} ( λ j ) ∈ ℓ q , there exists f 0 ∈ ℓ p ∗ f_{0} \in {\ell^{p}}^{ \ast } f 0 ∈ ℓ p ∗ satisfying ϕ ( f 0 ) = ( λ j ) \phi ( f_{0} ) = ( \lambda_{j} ) ϕ ( f 0 ) = ( λ j ) . Define function f 0 : ℓ p → C f_{0} : \ell^{p} \to \mathbb{C} f 0 : ℓ p → C as f 0 ( ( x j ) ) : = ∑ j = 1 ∞ x j λ j \displaystyle f_{0} \left( (x_{j} ) \right) : = \sum_{j=1}^{\infty} x_{j} \lambda_{j} f 0 ( ( x j ) ) := j = 1 ∑ ∞ x j λ j . Thus, for ( x j ) , ( y j ) ∈ ℓ p ( x_{j} ) , ( y_{j} ) \in \ell^{p} ( x j ) , ( y j ) ∈ ℓ p ,
f 0 ( λ ( x j ) + ( y j ) ) = f 0 ( ( λ x j + y j ) ) = ∑ j = 1 ∞ ( λ x j + y j ) λ j = λ ∑ j = 1 ∞ x j λ j + ∑ j = 1 ∞ y j λ j = λ f ( ( x j ) ) + f ( ( y j ) )
\begin{align*}
f_{0} \left( \lambda ( x_{j} ) + ( y_{j} ) \right) =& f_{0} \left( ( \lambda x_{j} + y_{j} ) \right)
\\ =& \sum_{j=1}^{\infty} ( \lambda x_{j} + y_{j} ) \lambda_{j}
\\ =& \lambda \sum_{j=1}^{\infty} x_{j} \lambda_{j} + \sum_{j=1}^{\infty} y_{j} \lambda_{j}
\\ =& \lambda f \left( (x_{j} ) \right) + f \left( (y_{j} ) \right)
\end{align*}
f 0 ( λ ( x j ) + ( y j ) ) = = = = f 0 ( ( λ x j + y j ) ) j = 1 ∑ ∞ ( λ x j + y j ) λ j λ j = 1 ∑ ∞ x j λ j + j = 1 ∑ ∞ y j λ j λ f ( ( x j ) ) + f ( ( y j ) )
leading to f 0 f_{0} f 0 being linear. Furthermore, by the Hölder inequality ,
∥ f 0 ∥ = sup ∥ ( x j ) ∥ p = 1 ∣ ∑ j = 1 ∞ x j λ j ∣ ≤ sup ∥ ( x j ) ∥ p = 1 ( ∑ j = 1 ∞ ∣ x j ∣ p ) 1 p ( ∑ j = 1 ∞ ∣ λ j ∣ q ) 1 q < ∞
\| f_{0} \| = \sup_{ \| (x_{j}) \|_{p } = 1 } \left| \sum_{j=1}^{\infty} x_{j} \lambda_{j} \right| \le \sup_{ \| (x_{j}) \|_{p } = 1 } \left( \sum_{j=1}^{\infty} | x_{j} |^{p} \right)^{{1} \over {p}} \left( \sum_{j=1}^{\infty} | \lambda_{j} |^{q} \right)^{{1} \over {q}} < \infty
∥ f 0 ∥ = ∥ ( x j ) ∥ p = 1 sup j = 1 ∑ ∞ x j λ j ≤ ∥ ( x j ) ∥ p = 1 sup ( j = 1 ∑ ∞ ∣ x j ∣ p ) p 1 ( j = 1 ∑ ∞ ∣ λ j ∣ q ) q 1 < ∞
thus, f 0 f_{0} f 0 is bounded, concluding f 0 ∈ ℓ p ∗ f_{0} \in {\ell^{p}}^{ \ast } f 0 ∈ ℓ p ∗ . This f 0 f_{0} f 0 also
ϕ ( f 0 ) = ( f 0 ( e 1 ) , f 0 ( e 2 ) , … ) = ( ∑ j = 1 ∞ e 1 λ j , ∑ j = 1 ∞ e 2 λ j , … ) = ( λ 1 , λ 2 , … ) = ( λ j )
\phi (f_{0} ) = \left( f_{0} (e_{1}) , f_{0} (e_{2}) , \dots \right) = \left( \sum_{j=1}^{\infty} e_{1} \lambda_{j} , \sum_{j=1}^{\infty} e_{2} \lambda_{j} , \dots \right) = (\lambda_{1} , \lambda_{2} , \dots ) = (\lambda_{j})
ϕ ( f 0 ) = ( f 0 ( e 1 ) , f 0 ( e 2 ) , … ) = ( j = 1 ∑ ∞ e 1 λ j , j = 1 ∑ ∞ e 2 λ j , … ) = ( λ 1 , λ 2 , … ) = ( λ j )
satisfies the requirement.
Part 6. ϕ \phi ϕ preserves norms.
It is sufficient to show ∥ ϕ ( f ) ∥ q = ∥ f ∥ \| \phi (f) \|_{q} = \| f \| ∥ ϕ ( f ) ∥ q = ∥ f ∥ .
∥ f ∥ = sup ∥ ( x j ) ∥ p = 1 ∣ f ( ( x j ) ) ∣ = sup ∥ ( x j ) ∥ p = 1 ∣ ∑ j = 1 ∞ ( x j ) f ( e j ) ∣ ≤ sup ∥ ( x j ) ∥ p = 1 ∑ j = 1 ∞ ∣ ( x j ) ∣ ∣ f ( e j ) ∣ ≤ sup ∥ ( x j ) ∥ p = 1 ( ∑ j = 1 ∞ ∣ x j ∣ p ) 1 p ( ∑ j = 1 ∞ ∣ f ( e j ) ∣ q ) 1 q = ( ∑ j = 1 ∞ ∣ f ( e j ) ∣ q ) 1 q = ∥ ϕ ( f ) ∥ q
\begin{align*}
\| f \| =& \sup_{ \| (x_{j}) \|_{p } = 1 } \left| f((x_{j} )) \right|
\\ =& \sup_{ \| (x_{j}) \|_{p } = 1 } \left| \sum_{j=1}^{\infty} (x_{j} ) f(e_{j} ) \right|
\\ \le & \sup_{ \| (x_{j}) \|_{p } = 1 } \sum_{j=1}^{\infty} | (x_{j} ) | | f(e_{j} ) |
\le \sup_{ \| (x_{j}) \|_{p } = 1 } \left( \sum_{j=1}^{\infty} | x_{j} |^{p} \right)^{{1} \over {p}} \left( \sum_{j=1}^{\infty} | f ( e_{j} ) |^{q} \right)^{{1} \over {q}}
\\ =& \left( \sum_{j=1}^{\infty} | f ( e_{j} ) |^{q} \right)^{{1} \over {q}}
\\ =& \| \phi (f) \|_{q}
\end{align*}
∥ f ∥ = = ≤ = = ∥ ( x j ) ∥ p = 1 sup ∣ f (( x j )) ∣ ∥ ( x j ) ∥ p = 1 sup j = 1 ∑ ∞ ( x j ) f ( e j ) ∥ ( x j ) ∥ p = 1 sup j = 1 ∑ ∞ ∣ ( x j ) ∣∣ f ( e j ) ∣ ≤ ∥ ( x j ) ∥ p = 1 sup ( j = 1 ∑ ∞ ∣ x j ∣ p ) p 1 ( j = 1 ∑ ∞ ∣ f ( e j ) ∣ q ) q 1 ( j = 1 ∑ ∞ ∣ f ( e j ) ∣ q ) q 1 ∥ ϕ ( f ) ∥ q
However, from Part 1., since ∣ ( ∑ j = 1 ∞ ∣ f ( e j ) ∣ q ) 1 q ∣ ≤ ∥ f ∥ \displaystyle \left| \left( \sum_{j=1}^{\infty} \left| f(e_{j} ) \right|^{q} \right)^{ {{1} \over {q}} } \right| \le \| f \| ( j = 1 ∑ ∞ ∣ f ( e j ) ∣ q ) q 1 ≤ ∥ f ∥ ,
∥ f ∥ ≤ ∥ ϕ ( f ) ∥ q ≤ ∥ f ∥
\| f \| \le \| \phi (f) \|_{q} \le \| f \|
∥ f ∥ ≤ ∥ ϕ ( f ) ∥ q ≤ ∥ f ∥
summarizing,
∥ ϕ ( f ) ∥ q = ∥ f ∥
\| \phi (f) \|_{q} = \| f \|
∥ ϕ ( f ) ∥ q = ∥ f ∥
Summarizing from Part 2. to Part 6. , we see that ϕ \phi ϕ is an isometry , thus proving that for 1 p + 1 q = 1 \displaystyle {{1} \over {p}} + {{1} \over {q}} = 1 p 1 + q 1 = 1 , ℓ p ∗ ≈ ℓ q {\ell^{p}}^{ \ast } \approx \ell^{q} ℓ p ∗ ≈ ℓ q holds.
Part 7. If ℓ p ∗ ≈ ℓ q {\ell^{p}}^{ \ast } \approx \ell^{q} ℓ p ∗ ≈ ℓ q , then ℓ p ∗ ∗ ≈ ℓ q ∗ {\ell^{p}}^{\ast \ast} \approx {\ell^{q}}^{ \ast } ℓ p ∗∗ ≈ ℓ q ∗ follows. Since isometry is an equivalence relation , and by the transitivity of equivalence relations ,
ℓ p ∗ ∗ ≈ ℓ p
\ell_{p}^{\ast \ast} \approx \ell_{p}
ℓ p ∗∗ ≈ ℓ p
■