logo

Reflexive of Vector Spaces 📂Linear Algebra

Reflexive of Vector Spaces

Definition 1

If XX is a vector space and XX^{\ast \ast} is its bidual, then XX is said to be reflexive if XXX^{\ast \ast} \approx X.

Explanation

Generally, the size of a vector space increases with each dual taken. However, reflexivity essentially means that the dual space does not continue to grow. Examples of reflexive spaces include:

An introduction to the proof concerning p\ell^{p} spaces.

Proof

Strategy: Define the function sign:CR\operatorname{sign} : \mathbb{C} \to \mathbb{R} specifically for this proof. sign(λ):={λλ,λ01,λ=0 \operatorname{sign} ( \lambda ) := \begin{cases} \displaystyle {{| \lambda | } \over { \lambda }} &, \lambda \ne 0 \\ 1 &, \lambda = 0 \end{cases} By definition, λsign(λ)=λ\lambda \operatorname{sign} (\lambda) = | \lambda |. Note that this slightly differs from the widely used definition of the sign of a complex number sign\operatorname{sign}.


First, we will prove that for 1p+1q=1\displaystyle {{1} \over {p}} + {{1} \over {q}} = 1, pq{\ell^{p}}^{ \ast } \approx \ell^{q} holds. Define the map ϕ:pq\phi : {\ell^{p}}^{ \ast } \to \ell^{q} for fpf \in {\ell^{p}}^{ \ast } as ϕ(f)=(f(e1),f(e2),)\phi (f) = \left( f(e_{1}) , f(e_{2}) , \dots \right), where eje_{j} represents the unit vector ej:=(,0,1,0,)e_{j}:=(\dots ,0, 1 , 0 , \dots ) that is 11 in the jjst component and 00 in others.

Now, define yj:=sign(fq(ej))fq1(ej)(j=1nf(ej)q)1pC\displaystyle y_{j} : = {{ \operatorname{sign} \left( f^q (e_{j} ) \right) f^{q-1} (e_{j} ) } \over { \left( \sum_{j=1}^{n} \left| f (e_{j} ) \right|^{q} \right)^{{{1} \over {p}}} }} \in \mathbb{C} containing yj:=sign(fq(ej))fq1(ej)(j=1nf(ej)q)1pC\displaystyle y_{j} : = {{ \operatorname{sign} \left( f^q (e_{j} ) \right) f^{q-1} (e_{j} ) } \over { \left( \sum_{j=1}^{n} \left| f (e_{j} ) \right|^{q} \right)^{{{1} \over {p}}} }} \in \mathbb{C}. Since for all λC\lambda \in \mathbb{C}, λ=1|\lambda| = 1,

y1e1++ynenpp=j=1nyjp=j=1n1f(ej)(q1)p(j=1nf(ej)q) \| y_{1} e_{1} + \dots + y_{n} e_{n} \|_{p}^{p} = \sum_{j=1}^{n} |y_{j}|^{p} = \sum_{j=1}^{n} {{ 1 \cdot \left| f (e_{j} ) \right|^{(q-1)p} } \over { \left( \sum_{j=1}^{n} \left| f (e_{j} ) \right|^{q} \right) }}

it follows that (q1)p=q(q-1)p = q; therefore,

y1e1++ynenpp=1 \| y_{1} e_{1} + \dots + y_{n} e_{n} \|_{p}^{p} = 1

Since fpf \in \ell_{p}^{ \ast } is linear,

f(y1e1++ynen)=y1f(e1)++ynf(en)=1(j=1nf(ej)q)1p(sign(fq(e1))fq1(e1)f(e1)++sign(fq(en))fq1(en)f(en))=1(j=1nf(ej)q)1p(sign(fq(e1))fq(e1)++sign(fq(en))fq(en)) \begin{align*} & f( y_{1} e_{1} + \dots + y_{n} e_{n} ) \\ =& y_{1} f( e_{1} ) + \dots + y_{n} f(e_{n}) \\ =& {{ 1 } \over { \left( \sum_{j=1}^{n} \left| f (e_{j} ) \right|^{q} \right)^{{{1} \over {p}}} }} \left( \operatorname{sign} \left( f^q (e_{1} ) \right) f^{q-1} (e_{1} ) f(e_{1}) + \dots +\operatorname{sign} \left( f^q (e_{n} ) \right) f^{q-1} (e_{n} ) f(e_{n}) \right) \\ =& {{ 1 } \over { \left( \sum_{j=1}^{n} \left| f (e_{j} ) \right|^{q} \right)^{{{1} \over {p}}} }} \left( \operatorname{sign} \left( f^q (e_{1} ) \right) f^{q} (e_{1} )+ \dots +\operatorname{sign} \left( f^q (e_{n} ) \right) f^{q} (e_{n} ) \right) \end{align*}

λsign(λ)=λ\lambda \operatorname{sign} (\lambda) = | \lambda |

Following the property of sign\operatorname{sign},

f(y1e1++ynen)=1(j=1nf(ej)q)1p(f(e1)q++f(en)q)=(j=1nf(ej)q)11p=(j=1nf(ej)q)1q \begin{align*} f( y_{1} e_{1} + \dots + y_{n} e_{n} ) =& {{ 1 } \over { \left( \sum_{j=1}^{n} \left| f (e_{j} ) \right|^{q} \right)^{{{1} \over {p}}} }} \left( \left| f (e_{1}) \right|^{q} + \dots + \left| f (e_{n}) \right|^{q} \right) \\ =& \left( \sum_{j=1}^{n} \left| f(e_{j} ) \right|^{q} \right)^{1- {{1} \over {p}} } \\ =& \left( \sum_{j=1}^{n} \left| f(e_{j} ) \right|^{q} \right)^{ {{1} \over {q}} } \end{align*}

  • Part 1. (j=1f(ej)q)1qf\displaystyle \left| \left( \sum_{j=1}^{\infty} \left| f(e_{j} ) \right|^{q} \right)^{ {{1} \over {q}} } \right| \le \| f \|

    Since ff is bounded, for all nNn \in \mathbb{N},

    (j=1nf(ej)q)1qfy1e1++ynenp \left| \left( \sum_{j=1}^{n} \left| f(e_{j} ) \right|^{q} \right)^{ {{1} \over {q}} } \right| \le \| f \| \| y_{1} e_{1} + \dots + y_{n} e_ {n} \|_{p}

    it follows from y1e1++ynenpp=1\displaystyle \| y_{1} e_{1} + \dots + y_{n} e_{n} \|_{p}^{p} = 1 that

    (j=1f(ej)q)1qf \left| \left( \sum_{j=1}^{\infty} \left| f(e_{j} ) \right|^{q} \right)^{ {{1} \over {q}} } \right| \le \| f \|

  • Part 2. ϕ\phi is a function.

    From Part 1., since ϕ(f)=(j=1f(ej)q)1qf<\displaystyle \left| \phi (f) \right| = \left| \left( \sum_{j=1}^{\infty} \left| f(e_{j} ) \right|^{q} \right)^{ {{1} \over {q}} } \right| \le \| f \| < \infty, then ϕ(f)q\phi ( f ) \in \ell^{q}

  • Part 3. ϕ\phi is linear.

    For f,gpf , g \in {\ell^{p}}^{ \ast } and λC\lambda \in \mathbb{C},

    ϕ(λf+g)=((λf+g)e1,)=(λf(e1)+g(e1),)=(λf(e1),)+(g(e1),)=λϕ(f)+ϕ(g) \begin{align*} \phi ( \lambda f + g ) =& \left( ( \lambda f + g ) e_{1} , \dots \right) \\ =& \left( \lambda f (e_{1}) + g (e_{1}) , \dots \right) \\ =&\left( \lambda f (e_{1}) , \dots \right) + \left( g (e_{1}) , \dots \right) \\ =& \lambda \phi (f) + \phi (g) \end{align*}

  • Part 4. ϕ\phi is injective.

    If for f,gpf , g \in {\ell^{p}}^{ \ast }, we say ϕ(f)=ϕ(g)\phi (f) = \phi (g), then for all jNj \in \mathbb{N}, f(ej)=g(ej)f(e_{j} ) = g( e_{j} ) must hold. Let (xj)q( x_{j} ) \in \ell^{q},

    f((xj))=f(limn(x1e1++xnen)) f \left( ( x_{j} ) \right) = f \left( \lim_{n \to \infty} \left( x_{1} e_{1} + \dots + x_{n} e_{n} \right) \right)

    Since ϕ\phi is linear, it is continuous,

    f(limn(x1e1++xnen))=limnf(x1e1++xnen)=limn(x1f(e1)++xnf(en))=limn(x1g(e1)++xng(en))=limng(x1e1++xnen)=g(limn(x1e1++xnen))=g((xj)) \begin{align*} f \left( \lim_{n \to \infty} \left( x_{1} e_{1} + \dots + x_{n} e_{n} \right) \right) =& \lim_{n \to \infty} f \left( x_{1} e_{1} + \dots + x_{n} e_{n} \right) \\ =& \lim_{n \to \infty} \left( x_{1} f (e_{1} ) + \dots + x_{n} f(e_{n}) \right) \\ =& \lim_{n \to \infty} \left( x_{1} g (e_{1} ) + \dots + x_{n} g (e_{n}) \right) \\ =& \lim_{n \to \infty} g \left( x_{1} e_{1} + \dots + x_{n} e_{n} \right) \\ =& g \left( \lim_{n \to \infty} \left( x_{1} e_{1} + \dots + x_{n} e_{n} \right) \right) \\ =& g \left( ( x_{j} ) \right) \end{align*}

    summarizing,

    ϕ(f)=ϕ(g)    f=g \phi (f) = \phi (g) \implies f = g

  • Part 5. ϕ\phi is surjective.

    To show that for any (λj)q( \lambda_{j} ) \in \ell^{q}, there exists f0pf_{0} \in {\ell^{p}}^{ \ast } satisfying ϕ(f0)=(λj)\phi ( f_{0} ) = ( \lambda_{j} ). Define function f0:pCf_{0} : \ell^{p} \to \mathbb{C} as f0((xj)):=j=1xjλj\displaystyle f_{0} \left( (x_{j} ) \right) : = \sum_{j=1}^{\infty} x_{j} \lambda_{j}. Thus, for (xj),(yj)p( x_{j} ) , ( y_{j} ) \in \ell^{p},

    f0(λ(xj)+(yj))=f0((λxj+yj))=j=1(λxj+yj)λj=λj=1xjλj+j=1yjλj=λf((xj))+f((yj)) \begin{align*} f_{0} \left( \lambda ( x_{j} ) + ( y_{j} ) \right) =& f_{0} \left( ( \lambda x_{j} + y_{j} ) \right) \\ =& \sum_{j=1}^{\infty} ( \lambda x_{j} + y_{j} ) \lambda_{j} \\ =& \lambda \sum_{j=1}^{\infty} x_{j} \lambda_{j} + \sum_{j=1}^{\infty} y_{j} \lambda_{j} \\ =& \lambda f \left( (x_{j} ) \right) + f \left( (y_{j} ) \right) \end{align*}

    leading to f0f_{0} being linear. Furthermore, by the Hölder inequality,

    f0=sup(xj)p=1j=1xjλjsup(xj)p=1(j=1xjp)1p(j=1λjq)1q< \| f_{0} \| = \sup_{ \| (x_{j}) \|_{p } = 1 } \left| \sum_{j=1}^{\infty} x_{j} \lambda_{j} \right| \le \sup_{ \| (x_{j}) \|_{p } = 1 } \left( \sum_{j=1}^{\infty} | x_{j} |^{p} \right)^{{1} \over {p}} \left( \sum_{j=1}^{\infty} | \lambda_{j} |^{q} \right)^{{1} \over {q}} < \infty

    thus, f0f_{0} is bounded, concluding f0pf_{0} \in {\ell^{p}}^{ \ast }. This f0f_{0} also

    ϕ(f0)=(f0(e1),f0(e2),)=(j=1e1λj,j=1e2λj,)=(λ1,λ2,)=(λj) \phi (f_{0} ) = \left( f_{0} (e_{1}) , f_{0} (e_{2}) , \dots \right) = \left( \sum_{j=1}^{\infty} e_{1} \lambda_{j} , \sum_{j=1}^{\infty} e_{2} \lambda_{j} , \dots \right) = (\lambda_{1} , \lambda_{2} , \dots ) = (\lambda_{j})

    satisfies the requirement.

  • Part 6. ϕ\phi preserves norms.

    It is sufficient to show ϕ(f)q=f\| \phi (f) \|_{q} = \| f \|.

    f=sup(xj)p=1f((xj))=sup(xj)p=1j=1(xj)f(ej)sup(xj)p=1j=1(xj)f(ej)sup(xj)p=1(j=1xjp)1p(j=1f(ej)q)1q=(j=1f(ej)q)1q=ϕ(f)q \begin{align*} \| f \| =& \sup_{ \| (x_{j}) \|_{p } = 1 } \left| f((x_{j} )) \right| \\ =& \sup_{ \| (x_{j}) \|_{p } = 1 } \left| \sum_{j=1}^{\infty} (x_{j} ) f(e_{j} ) \right| \\ \le & \sup_{ \| (x_{j}) \|_{p } = 1 } \sum_{j=1}^{\infty} | (x_{j} ) | | f(e_{j} ) | \le \sup_{ \| (x_{j}) \|_{p } = 1 } \left( \sum_{j=1}^{\infty} | x_{j} |^{p} \right)^{{1} \over {p}} \left( \sum_{j=1}^{\infty} | f ( e_{j} ) |^{q} \right)^{{1} \over {q}} \\ =& \left( \sum_{j=1}^{\infty} | f ( e_{j} ) |^{q} \right)^{{1} \over {q}} \\ =& \| \phi (f) \|_{q} \end{align*}

    However, from Part 1., since (j=1f(ej)q)1qf\displaystyle \left| \left( \sum_{j=1}^{\infty} \left| f(e_{j} ) \right|^{q} \right)^{ {{1} \over {q}} } \right| \le \| f \|,

    fϕ(f)qf \| f \| \le \| \phi (f) \|_{q} \le \| f \|

    summarizing,

    ϕ(f)q=f \| \phi (f) \|_{q} = \| f \|

    Summarizing from Part 2. to Part 6., we see that ϕ\phi is an isometry, thus proving that for 1p+1q=1\displaystyle {{1} \over {p}} + {{1} \over {q}} = 1, pq{\ell^{p}}^{ \ast } \approx \ell^{q} holds.

  • Part 7.
    If pq{\ell^{p}}^{ \ast } \approx \ell^{q}, then pq{\ell^{p}}^{\ast \ast} \approx {\ell^{q}}^{ \ast } follows. Since isometry is an equivalence relation, and by the transitivity of equivalence relations,

    pp \ell_{p}^{\ast \ast} \approx \ell_{p}


  1. Kreyszig. (1989). Introductory Functional Analysis with Applications: p107. ↩︎