logo

Laplace Transform of the Step Function 📂Odinary Differential Equations

Laplace Transform of the Step Function

Definition1

Let’s denote the unit step function unit step function shifted by cc as follows:

uc(t)={0t<c1tc u_{c}(t)=\begin{cases} 0 & t<c \\ 1 & t \ge c \end{cases}

2.jpg

Formula

The Laplace transform of the step function uc(t)u_{c}(t) is as follows.

L{uc(t)}=ecss,s>0 \begin{equation} \mathcal{L} \left\{ u_{c}(t) \right\} = \dfrac{e^{-cs}}{s},\quad s>0 \label{eq1} \end{equation}

Let’s assume that cc is an arbitrary constant, and when s>a0s > a \ge 0, the Laplace transform of f(t)f(t), F(s)F(s) exists, which means F(s)=L{f(t)}F(s)=\mathcal{L} \left\{ f(t) \right\}. Then, the Laplace transform of the product of ff and ucu_{c} is as follows.

L{uc(t)f(tc)}=ecsF(s) \begin{equation} \mathcal {L} \left\{ u_{c}(t) f(t-c) \right\} = e^{-cs} F(s) \label{eq2} \end{equation}

Explanation

Since the variable tt we deal with is time, which means t>0t>0, let’s consider this to be obvious without special mention. Functions like uc(t)u_{c}(t) are useful in describing values that suddenly appear or disappear after a certain time when switching on or off in electrical circuits.

3.jpg

Derivation

(1)

L{uc(t)}=0estuc(t)dt=0cest0dt+cest1dt=limA1s[est]cA=ecss \begin{align*} \mathcal{L} \left\{ u_{c}(t) \right\} &= \int_{0}^\infty e^{-st}u_{c}(t)dt \\ &=\int_{0}^c e^{-st}\cdot 0 dt + \int_{c}^\infty e^{-st}\cdot 1 dt \\ &= \lim _{A \to \infty} -\dfrac{1}{s} \left[ e^{-st} \right]_{c}^A \\ &= \dfrac{e^{-cs}}{s} \end{align*}

At this point, since limAesA=0\lim \limits_{A \to \infty } e^{-sA}=0, it follows that s>0s>0.

(2)

L{uc(t)f(tc)}=0estuc(t)f(tc)dt=cestf(tc)dt \begin{align*} \mathcal{L} \left\{ u_{c}(t) f(t-c) \right\} &= \int_{0} ^\infty e^{-st}u_{c}(t) f(t-c)dt \\ &= \int_{c}^\infty e^{-st} f(t-c) dt \end{align*}

Let’s substitute tc=τt-c=\tau here. Then, 0τ0 \le \tau \le \infty and dt=dτdt=d\tau. Therefore,

0es(τ+c)f(τ)dτ=ecs0esτf(τ)dτ=ecsF(s) \begin{align*} \int _{0} ^\infty e^{-s(\tau+c)}f(\tau)d\tau &= e^{-cs}\int_{0}^\infty e^{-s\tau}f(\tau)d\tau \\ &= e^{-cs}F(s) \end{align*}

Example

Let f(t)=sint+uπ/4(t)cos(tπ4)f(t)=\sin t + u_{\pi /4} (t) \cos (t-\frac{\pi}{4}).

L{f(t)}=L{sint}+L{uπ/4cos(tπ4)}=L{sint}+eπ4sL{cost}=1s2+1+eπ4sss2+1=1+seπ4ss2+1 \begin{align*} \mathcal{L} \left\{ f(t) \right\} &= \mathcal{L} \left\{ \sin t \right\} + \mathcal{L} \left\{ u_{\pi /4} \cos (t-\frac{\pi}{4}) \right\} \\ &=\mathcal{L} \left\{ \sin t \right\} + e^{-\frac{\pi }{ 4 }s} \mathcal{L} \left\{ \cos t \right\} \\ &=\dfrac{1}{s^2+1} + e^{ -\frac{\pi}{4}s}\dfrac{s}{s^2+1} \\ &=\dfrac{ 1+ se^{ -\frac{\pi}{4}s}}{s^2+1} \end{align*}

See Also


  1. William E. Boyce, Boyce’s Elementary Differential Equations and Boundary Value Problems (11th Edition, 2017), p257-260 ↩︎