1 | s1 | link |
eat | s−a1 | link |
tn | sn+1n! | link |
tp | sp+1Γ(p+1) | link |
tpeat | (s−a)p+1Γ(p+1) | link |
sin(at) | s2+a2a | link |
cos(at) | s2+a2s | link |
eatsin(bt) | (s−a)2+b2b | link |
eatcos(bt) | (s−a)2+b2s−a | link |
sinh(at) | s2−a2a | link |
cosh(at) | s2−a2s | link |
eatsinh(bt) | (s−a)2−b2b | link |
eatcosh(bt) | (s−a)2−b2s−a | link |
uc(t)={01t<ct≥c | se−cs | link |
uc(t)f(t−c) | e−csF(s) | link |
f′(t) | sL{f(t)}−f(0) | link |
f(n) | snL{f(t)}−sn−1f(0)−⋯−f(n−1)(0) | link |
f(t)=f(t+T) | 1−e−st∫0Te−stf(t)dt | link |
δ(t−t0) | e−st0 | link |
f(ct) | c1F(cs) | link |
k1f(kt) | F(ks) | link |
a1e−abtf(at) | F(as+b) | link |
tnf(t) | (−1)nF(n)(s) | link |