logo

Laplace Transform Table 📂Odinary Differential Equations

Laplace Transform Table

Formula1

This is table of Laplace transform.

f(t)=L1f(t)=\mathcal{L^{-1}}F(s)=L{f(t)}F(s)=\mathcal{L} \left\{ f(t) \right\}Derivation
111s\dfrac{1}{s}link
eate^{at}1sa\dfrac{1}{s-a}link
tnt^nn!sn+1\dfrac{n!}{s^{n+1}}link
tpt^{p}Γ(p+1)sp+1\dfrac{ \Gamma (p+1) }{ s^{p+1}}link
tpeatt^{p}e^{at}Γ(p+1)(sa)p+1\dfrac{ \Gamma (p+1) }{ (s-a)^{p+1}}link
sin(at)\sin (at)as2+a2\dfrac{a}{s^2+a^2}link
cos(at)\cos (at)ss2+a2\dfrac{s}{s^2+a^2}link
eatsin(bt)e^{at}\sin(bt)b(sa)2+b2\dfrac{b}{(s-a)^2 +b^2}link
eatcos(bt)e^{at}\cos(bt)sa(sa)2+b2\dfrac{s-a}{(s-a)^2+b^2}link
sinh(at)\sinh (at)as2a2\dfrac{a}{s^2-a^2}link
cosh(at)\cosh (at)ss2a2\dfrac{s}{s^2-a^2}link
eatsinh(bt)e^{at} \sinh (bt)b(sa)2b2\dfrac{b}{(s-a)^2-b^2}link
eatcosh(bt)e^{at} \cosh (bt)sa(sa)2b2\dfrac{s-a}{(s-a)^2-b^2}link
uc(t)={0t<c1tcu_{c}(t)= \begin{cases} 0 & t<c \\ 1 & t\ge c\end{cases}ecss\dfrac{e^{-cs}}{s}link
uc(t)f(tc)u_{c}(t)f(t-c)ecsF(s)e^{-cs}F(s)link
f(t)f^{\prime}(t)sL{f(t)}f(0)s\mathcal{L} \left\{ f(t) \right\} -f(0)link
f(n)f^{(n)}snL{f(t)}sn1f(0)f(n1)(0){s^n\mathcal {L}\left\{ f(t) \right\} -s^{n-1}f(0) - \cdots -f^{(n-1)}(0) }link
f(t)=f(t+T)f(t)=f(t+T)0Testf(t)dt1est\dfrac{\displaystyle \int_{0}^T e^{-st}f(t)dt}{1-e^{-st}}link
δ(tt0)\delta (t-t_{0})est0e^{-st_{0}}link
f(ct)f(ct)1cF(sc)\frac{1}{c}F \left( \frac{s}{c} \right)link
1kf(tk)\frac{1}{k}f (\frac{t}{k} )F(ks)F(ks)link
1aebatf(ta)\frac{1}{a} e^{-\frac{b} {a}t}f\left(\frac{t}{a}\right)F(as+b)F(as+b)link
tnf(t)t^{n}f(t)(1)nF(n)(s)(-1)^{n}F^{(n)}(s)link

  1. William E. Boyce , Boyce’s Elementary Differential Equations and Boundary Value Problems (11th Edition, 2017), Chapter6 The Laplace Transform ↩︎