Eisenstein's Criterion
Theorem 1
$f(x) = a_{n} x^{n} + \cdots + a_{0 } \in \mathbb{Z} [ x ]$, if it satisfies the following conditions for the primes $p \in \mathbb{Z}$ and $k = 0,1,2, \cdots , n-1$, then $f(x)$ is irreducible over $\mathbb{Q}$.
- (i): $a_{n} \not\equiv 0 \pmod{p}$
- (ii): $a_{k} \equiv 0 \pmod{p} $
- (iii): $a_{0} \not\equiv 0 \pmod{p^2}$
Description
It has significance as a very simple judgment method for integer polynomials of the form $f(x) = ax^{n} + b$. It can be usefully discussed in relation to algebraic numbers as a judgment method for $\mathbb{Q}$.
Example
Show that $f(x) = 25 x^{5} - 9 x^4 - 3 x^2 - 12$ is irreducible over $\mathbb{Q}$.
Solution
- (i) $25 \not\equiv 0 \pmod{3}$
- (ii) $-9 \equiv -3 \equiv 0 \pmod{3}$
- (iii) $12 \not\equiv 0 \pmod{9}$
Applying Eisenstein’s criterion to $p=3$ shows that $f(x)$ is irreducible.
Proof
If $f(x) \in \mathbb{Z} [ x ]$ is said to be $f(x) = R(x) S(x)$ for $R(x)$ of degree $r<n$ and $S(x)$ of degree $s<n$, then $$ R(x) , S(x) \in \mathbb{Q} [ x ] \iff R(x) , S(x) \in \mathbb{Z} [ x ] $$ is known. Assuming from $Z[x]$ that $$ f(x) = (b_{r} x^{r} + \cdots + b_{0}) (c_{s} x^{s} + \cdots + c_{0}) $$ satisfies the three conditions (i), (ii), and (iii), condition (iii) means that $$ b_{0} c_{0 } = a_{0} \not\equiv 0 \pmod{p^2} $$ so $b_{0}$ and $c_{0}$ are not both $$ b_{0} \equiv c_{0} \equiv p \equiv 0 \pmod{p} $$ Instead, considering the case where one is congruent, $$\begin{cases} b_{0} \not\equiv 0 \pmod{p} \\ c_{0} \equiv 0 \pmod{p} \end{cases}$$ then from condition (i), $$ b_{r} c_{s} = a_{n} \not\equiv 0 \pmod{p} $$ must be $$ \begin{cases} b_{r} \not\equiv 0 \pmod{p} \qquad \cdots (\star) \\ c_{s} \not\equiv 0 \pmod{p} \end{cases} $$
Now, if we call the smallest value among $k$ that satisfies $c_{k} \not\equiv 0 \pmod{p}$ as $m$, then $$ a_{m} = b_{0 } c_{m} + b_{1} c_{m-1} + \cdots + \begin{cases} b_{m} c_{0} & , r \ge m \\ b_{r} c_{m-r} & , r<m \end{cases} $$ From $(\star)$, $b_{0} \not\equiv 0 \pmod{p}$ and by the definition of $m$, $c_{m} \not\equiv 0 \pmod{p}$, therefore, $$ c_{m-1} \equiv \cdots \equiv c_{0} \equiv 0 \pmod{p} $$ Thus, $$ a_{m} \not\equiv 0 \pmod{p} $$ and according to conditions (i) and (ii), $m=n$ must be.
Eventually, it is $s \ge m = n$, which contradicts the premise that $s < n$.
■
Fraleigh. (2003). A first course in abstract algebra(7th Edition): p215. ↩︎