Properties of Linear Operators
📂Banach Space Properties of Linear Operators Theorem T : ( X , ∥ ⋅ ∥ X ) → ( Y , ∥ ⋅ ∥ Y ) T : (X , \left\| \cdot \right\|_{X}) \to ( Y , \left\| \cdot \right\|_{Y} ) T : ( X , ∥ ⋅ ∥ X ) → ( Y , ∥ ⋅ ∥ Y ) is called a linear operator .
(a) If T T T is bounded , for all x ∈ X x \in X x ∈ X , ∥ T ( x ) ∥ Y ≤ ∥ T ∥ ∥ x ∥ X \left\| T(x) \right\|_{Y} \le \left\| T \right\| \left\| x \right\|_{X} ∥ T ( x ) ∥ Y ≤ ∥ T ∥ ∥ x ∥ X
(b) T T T is continuous ⟺ \iff ⟺ T T T is bounded
(c) If X X X is a finite-dimensional space , then T T T is continuous.
(d) If Y Y Y is a Banach space, then ( B ( X , Y ) , ∥ ⋅ ∥ ) ( B(X,Y) , \| \cdot \| ) ( B ( X , Y ) , ∥ ⋅ ∥ ) is a Banach space .
Explanation B ( X , Y ) B(X,Y) B ( X , Y ) is the space of bounded linear operators , so by (b) , it is known that all operators in this space are continuous . Being linear is useful, but if it is not only continuous but also complete , it is definitely a very good space .
(a) is widely used, and if there are no major problems, it is usually just written as ∥ T x ∥ ≤ ∥ T ∥ ∥ x ∥ \| Tx \| \le \| T \| \| x \| ∥ T x ∥ ≤ ∥ T ∥∥ x ∥ .
(d) In norm ∥ ⋅ ∥ \| \cdot \| ∥ ⋅ ∥ is the operator norm .
Proof (a) Strategy: Use the fact that ∥ x ∥ X \| x \|_{X} ∥ x ∥ X is a scalar to go in and out of T T T .
Since T T T is bounded, there exists some c > 0 c> 0 c > 0 such that
∥ T ( x ) ∥ Y ∥ x ∥ X ≤ c
{{ \| T(x) \|_{Y} } \over { \| x \|_{X} }} \le c
∥ x ∥ X ∥ T ( x ) ∥ Y ≤ c
Since ∥ x ∥ X \| x \|_{X} ∥ x ∥ X is a scalar and T T T is linear,
∥ T ( x ) ∥ Y ∥ x ∥ X = ∥ 1 ∥ x ∥ X T ( x ) ∥ Y = ∥ T ( x ∥ x ∥ X ) ∥ Y
{{ \| T(x) \|_{Y} } \over { \| x \|_{X} }} =\left\| {{1} \over {\| x \|_{X} }} T \left( x \right) \right\|_{Y} = \left\| T \left( {{x} \over {\| x \|_{X} }} \right) \right\|_{Y}
∥ x ∥ X ∥ T ( x ) ∥ Y = ∥ x ∥ X 1 T ( x ) Y = T ( ∥ x ∥ X x ) Y
From the definition of operator norm , since ∥ T ∥ = sup x ∈ X ∥ x ∥ = 1 ∥ T ( x ) ∥ Y \left\| T \right\| = \sup \limits_{\substack{x\in X \\ \left\| x \right\|=1 }} \left\| T(x) \right\|_{Y} ∥ T ∥ = x ∈ X ∥ x ∥ = 1 sup ∥ T ( x ) ∥ Y ,
∥ T ( x ) ∥ Y ∥ x ∥ X = ∥ T ( x ∥ x ∥ X ) ∥ Y ≤ sup x ∈ X ∥ x ∥ = 1 ∥ T ( x ) ∥ Y = ∥ T ∥
{{ \| T(x) \|_{Y} } \over { \| x \|_{X} }} = \left\| T \left( {{x} \over {\| x \|_{X} }} \right) \right\|_{Y} \le \sup \limits_{\substack{x\in X \\ \left\| x \right\|=1 }} \left\| T(x) \right\|_{Y} = \| T \|
∥ x ∥ X ∥ T ( x ) ∥ Y = T ( ∥ x ∥ X x ) Y ≤ x ∈ X ∥ x ∥ = 1 sup ∥ T ( x ) ∥ Y = ∥ T ∥
Multiplying both sides by the scalar ∥ x ∥ X \| x \|_{X} ∥ x ∥ X gives
∥ T ( x ) ∥ Y ≤ ∥ T ∥ ∥ x ∥ X
\| T(x) \|_{Y} \le \| T \| \| x \|_{X}
∥ T ( x ) ∥ Y ≤ ∥ T ∥∥ x ∥ X
■
(b) Strategy: Direct deduction using epsilon-delta argument . ( ⟹ ) (\implies) ( ⟹ ) employs reductio ad absurdum, and according to continuity , it constructs a sequence that would be a contradiction to the assumption.
( ⟸ ) (\impliedby) ( ⟸ )
If T = 0 T = 0 T = 0 , it’s naturally continuous, so consider the case when T ≠ 0 T \ne 0 T = 0 . For any x 0 ∈ X x_{0} \in X x 0 ∈ X , let’s say ∥ x − x 0 ∥ < δ \| x - x_{0} \| < \delta ∥ x − x 0 ∥ < δ .
Since T T T is a bounded linear operator, by (a)
∥ T x − T x 0 ∥ = ∥ T ( x − x 0 ) ∥ ≤ ∥ T ∥ ∥ x − x 0 ∥ < ∥ T ∥ δ
\| Tx - Tx_{0} \| = \| T ( x - x_{0} ) \| \le \| T \| \| x - x_{0} \| < \| T \| \delta
∥ T x − T x 0 ∥ = ∥ T ( x − x 0 ) ∥ ≤ ∥ T ∥∥ x − x 0 ∥ < ∥ T ∥ δ
For any ε > 0 \varepsilon > 0 ε > 0 , if we set δ = ε ∥ T ∥ \displaystyle \delta = {{ \varepsilon } \over { \| T \| }} δ = ∥ T ∥ ε , then ∥ T x − T x 0 ∥ < ε \| Tx - Tx_{0} \| < \varepsilon ∥ T x − T x 0 ∥ < ε , so T T T is continuous.
( ⟹ ) (\implies) ( ⟹ )
If we assume that ∥ T ∥ = ∞ \| T \| = \infty ∥ T ∥ = ∞ ,
∥ x n ∥ = 1
\| x_{n} \| = 1
∥ x n ∥ = 1
lim n → ∞ ∥ T x n ∥ = ∞
\lim_{n \to \infty} \| T x_{n} \| = \infty
n → ∞ lim ∥ T x n ∥ = ∞
There exists a sequence of X X X , { x n } n ∈ N \left\{ x_{n} \right\}_{ n \in \mathbb{N} } { x n } n ∈ N , such that defining z n : = x n ∥ T x n ∥ \displaystyle z_{n} := {{x_{n}} \over { \sqrt{ \| Tx_{n} \| } }} z n := ∥ T x n ∥ x n ,
lim n → ∞ z n = 0
\lim_{n \to \infty} z_{n} = 0
n → ∞ lim z n = 0
Since T T T is continuous ,
0 = lim n → ∞ ∥ T ( 0 ) ∥ = ∥ T ( lim n → ∞ z n ) ∥ = lim n → ∞ ∥ T ( z n ) ∥ = lim n → ∞ ∥ T ( x n ∥ T x n ∥ ) ∥ = lim n → ∞ ∥ T ( x n ) ∥ = ∞
0 = \lim_{n \to \infty} \| T( 0 ) \| = \left\| T \left( \lim_{n \to \infty} z_{n} \right) \right\| = \lim_{n \to \infty} \| T( z_{n} ) \| = \lim_{n \to \infty} \left\| T \left( {{x_{n}} \over { \sqrt{ \| Tx_{n} \| } }} \right) \right\|= \lim_{n \to \infty} \sqrt{ \| T(x_{n} ) \| } = \infty
0 = n → ∞ lim ∥ T ( 0 ) ∥ = T ( n → ∞ lim z n ) = n → ∞ lim ∥ T ( z n ) ∥ = n → ∞ lim T ( ∥ T x n ∥ x n ) = n → ∞ lim ∥ T ( x n ) ∥ = ∞
This is a contradiction to the assumption, so T T T is bounded.
■
(c) Strategy: To show continuity according to (b) , it is sufficient to demonstrate boundedness. Using the properties of finite-dimensional spaces , showing that T T T is bounded is relatively straightforward.
If we say dim X = n \dim X = n dim X = n , then X X X has a basis { e 1 , ⋯ , e n } \left\{ e_{1} , \cdots , e_{n} \right\} { e 1 , ⋯ , e n } and any x ∈ X x \in X x ∈ X for t i ∈ C t_{i} \in \mathbb{C} t i ∈ C is
x = ∑ i = 1 n t i e i
x = \sum_{i=1}^{n} t_{i} e_{i}
x = i = 1 ∑ n t i e i
Since T T T is a linear operator,
T x = T ( ∑ i = 1 n t i e i ) = ∑ i = 1 n ∣ t i ∣ T ( e i )
Tx = T \left( \sum_{i=1}^{n} t_{i} e_{i} \right) = \sum_{i=1}^{n} | t_{i} | T \left( e_{i} \right)
T x = T ( i = 1 ∑ n t i e i ) = i = 1 ∑ n ∣ t i ∣ T ( e i )
Taking the norm ∥ ⋅ ∥ Y \| \cdot \|_{Y} ∥ ⋅ ∥ Y on both sides gives
∥ T x ∥ Y = ∥ ∑ i = 1 n t i T ( e i ) ∥ Y ≤ ∑ i = 1 n ∣ t i ∣ ∥ T ( e i ) ∥ Y ≤ max 1 ≤ i ≤ n ∥ T ( e i ) ∥ Y ∑ i = 1 n ∣ t i ∣
\begin{equation}
\| Tx \|_{Y} = \left\| \sum_{i=1}^{n} t_{i} T \left( e_{i} \right) \right\|_{Y} \le \sum_{i=1}^{n} | t_{i} | \| T ( e_{i} ) \|_{Y} \le \max_{1 \le i \le n} \| T ( e_{i} ) \|_{Y} \sum_{i=1}^{n} | t_{ i} |
\end{equation}
∥ T x ∥ Y = i = 1 ∑ n t i T ( e i ) Y ≤ i = 1 ∑ n ∣ t i ∣∥ T ( e i ) ∥ Y ≤ 1 ≤ i ≤ n max ∥ T ( e i ) ∥ Y i = 1 ∑ n ∣ t i ∣
Now let’s define a new norm ∥ ∑ i = 1 n t i e i ∥ 1 : = ∑ i = 1 n ∣ t i ∣ \displaystyle \left\| \sum_{i=1}^{n} t_{i} e_{i} \right\|_{1} := \sum_{i=1}^{n} | t_{ i} | i = 1 ∑ n t i e i 1 := i = 1 ∑ n ∣ t i ∣ . Since all norms defined in a finite-dimensional vector space are equivalent ,
C ∥ ∑ i = 1 n t i e i ∥ 1 ≤ ∥ ∑ i = 1 n t i e i ∥ X
C \left\| \sum_{i=1}^{n} t_{i} e_{i} \right\|_{1} \le \left\| \sum_{i=1}^{n} t_{i} e_{i} \right\|_{X}
C i = 1 ∑ n t i e i 1 ≤ i = 1 ∑ n t i e i X
There exists some C > 0 C>0 C > 0 that satisfies. Therefore,
∑ i = 1 n ∣ t i ∣ = ∥ ∑ i = 1 n t i e i ∥ 1 ≤ 1 C ∥ ∑ i = 1 n t i e i ∥ X = 1 C ∥ x ∥ X
\sum_{i=1}^{n} | t_{ i} | = \left\| \sum_{i=1}^{n} t_{i} e_{i} \right\|_{1} \le {{1} \over {C}} \left\| \sum_{i=1}^{n} t_{i} e_{i} \right\|_{X} = {{1} \over {C}} \| x \|_{X}
i = 1 ∑ n ∣ t i ∣ = i = 1 ∑ n t i e i 1 ≤ C 1 i = 1 ∑ n t i e i X = C 1 ∥ x ∥ X
Applying to ( 1 ) (1) ( 1 ) gives
∥ T x ∥ Y ≤ 1 C max 1 ≤ i ≤ n ∥ T ( e i ) ∥ Y ⋅ ∥ x ∥ X
\| T x \|_{Y} \le {{1} \over {C}} \max_{1 \le i \le n} \| T(e_{i} ) \|_{Y} \cdot \| x \|_{X}
∥ T x ∥ Y ≤ C 1 1 ≤ i ≤ n max ∥ T ( e i ) ∥ Y ⋅ ∥ x ∥ X
Therefore, ∥ T ∥ ≤ 1 C max 1 ≤ i ≤ n ∥ T ( e i ) ∥ Y < ∞ \displaystyle \| T \| \le {{1} \over {C}} \max_{1 \le i \le n} \| T(e_{i} ) \|_{Y} < \infty ∥ T ∥ ≤ C 1 1 ≤ i ≤ n max ∥ T ( e i ) ∥ Y < ∞ but since T T T is a bounded linear operator, by (b) , it is continuous .
■
(d) Strategy: Convert the discussion to T ( x ) ∈ T ( X ) ⊂ Y T(x) \in T(X) \subset Y T ( x ) ∈ T ( X ) ⊂ Y by drawing out completeness in Banach space Y Y Y .
Part 1. For the normed space ( B ( X , Y ) , ∥ ⋅ ∥ ) ( B(X,Y) , \| \cdot \| ) ( B ( X , Y ) , ∥ ⋅ ∥ ) , ∥ ⋅ ∥ \| \cdot \| ∥ ⋅ ∥ satisfies the following conditions for T ∈ B ( X , Y ) T \in B(X,Y) T ∈ B ( X , Y ) ,
(i):
∥ T ∥ = sup x ∈ X ∥ x ∥ = 1 ∥ T ( x ) ∥ ≥ 0
\| T \| = \sup\limits_{\substack{x\in X \\ \left\| x \right\|=1 }} \| T(x) \| \ge 0
∥ T ∥ = x ∈ X ∥ x ∥ = 1 sup ∥ T ( x ) ∥ ≥ 0
(ii):
∥ T ∥ = sup x ∈ X ∥ x ∥ = 1 ∥ T ( x ) ∥ = 0 ⟺ T = 0
\| T \| = \sup\limits_{\substack{x\in X \\ \left\| x \right\|=1 }} \| T(x) \| = 0 \iff T = 0
∥ T ∥ = x ∈ X ∥ x ∥ = 1 sup ∥ T ( x ) ∥ = 0 ⟺ T = 0
(iii):
∥ λ T ∥ = sup x ∈ X ∥ x ∥ = 1 ∥ λ T ( x ) ∥ = sup x ∈ X ∥ x ∥ = 1 λ ∥ T ( x ) ∥ = λ sup x ∈ X ∥ x ∥ = 1 ∥ T ( x ) ∥
\| \lambda T \| = \sup\limits_{\substack{x\in X \\ \left\| x \right\|=1 }} \| \lambda T(x) \| =\sup\limits_{\substack{x\in X \\ \left\| x \right\|=1 }} \lambda \| T(x) \| = \lambda \sup\limits_{\substack{x\in X \\ \left\| x \right\|=1 }} \| T(x) \|
∥ λ T ∥ = x ∈ X ∥ x ∥ = 1 sup ∥ λ T ( x ) ∥ = x ∈ X ∥ x ∥ = 1 sup λ ∥ T ( x ) ∥ = λ x ∈ X ∥ x ∥ = 1 sup ∥ T ( x ) ∥
(iv):
∥ T 1 + T 2 ∥ = sup x ∈ X ∥ x ∥ = 1 ∥ ( T 1 + T 2 ) ( x ) ∥ ≤ sup x ∈ X ∥ x ∥ = 1 ( ∥ T 1 ( x ) ∥ + ∥ T 2 ( x ) ∥ ) ≤ sup x ∈ X ∥ x ∥ = 1 ∥ T 1 ( x ) ∥ + sup x ∈ X ∥ x ∥ = 1 ∥ T 2 ( x ) ∥
\begin{align*}
\| T_{1} + T_{2} \| =& \sup\limits_{\substack{x\in X \\ \left\| x \right\|=1 }} \| (T_{1} + T_{2})(x) \|
\\ \le & \sup\limits_{\substack{x\in X \\ \left\| x \right\|=1 }} \left( \| T_{1} (x) \| + \| T_{2}(x) \| \right)
\\ \le & \sup\limits_{\substack{x\in X \\ \left\| x \right\|=1 }} \| T_{1}(x) \| + \sup\limits_{\substack{x\in X \\ \left\| x \right\|=1 }} \| T_{2}(x) \|
\end{align*}
∥ T 1 + T 2 ∥ = ≤ ≤ x ∈ X ∥ x ∥ = 1 sup ∥ ( T 1 + T 2 ) ( x ) ∥ x ∈ X ∥ x ∥ = 1 sup ( ∥ T 1 ( x ) ∥ + ∥ T 2 ( x ) ∥ ) x ∈ X ∥ x ∥ = 1 sup ∥ T 1 ( x ) ∥ + x ∈ X ∥ x ∥ = 1 sup ∥ T 2 ( x ) ∥
Part 2. Completeness
Defining a Cauchy sequence of B ( X , Y ) B(X,Y) B ( X , Y ) , { T n } n ∈ N \left\{ T_{n} \right\}_{n \in \mathbb{N}} { T n } n ∈ N , for any ε > 0 \varepsilon > 0 ε > 0 ,
∥ T n − T m ∥ < ε
\| T_{n} - T_{m} \| < \varepsilon
∥ T n − T m ∥ < ε
According to (a) , for all x ∈ X x \in X x ∈ X ,
∥ T n x − T m x ∥ = ∥ ( T n − T m ) x ∥ ≤ ∥ T n − T m ∥ ∥ x ∥ < ε ∥ x ∥
\| T_{n} x - T_{m} x \| = \| ( T_{n} - T_{m} ) x \| \le \| T_{n} - T_{m} \| \| x \| < \varepsilon \| x \|
∥ T n x − T m x ∥ = ∥ ( T n − T m ) x ∥ ≤ ∥ T n − T m ∥∥ x ∥ < ε ∥ x ∥
Therefore, { T n x } \left\{ T_{n}x \right\} { T n x } is a Cauchy sequence in Y Y Y . Since Y Y Y is assumed to be complete, for some T x ∈ Y Tx \in Y T x ∈ Y
lim m → ∞ T m x = T x
\lim_{m \to \infty } T_{m}x = Tx
m → ∞ lim T m x = T x
Again, according to (a) , for all x ∈ X x \in X x ∈ X ,
∥ T n x − T x ∥ = ∥ T n x − lim m → ∞ T m x ∥ = lim m → ∞ ∥ T n x − T m x ∥ < ε ∥ x ∥
\| T_{n} x - T x \| = \left\| T_{n} x - \lim_{m \to \infty} T_{m} x \right\| = \lim_{m \to \infty} \left\| T_{n} x - T_{m} x \right\| < \varepsilon \| x \|
∥ T n x − T x ∥ = T n x − m → ∞ lim T m x = m → ∞ lim ∥ T n x − T m x ∥ < ε ∥ x ∥
For all x ∈ X x \in X x ∈ X , since ∥ ( T n − T ) x ∥ ∥ x ∥ < ϵ \displaystyle {{ \| ( T_{n} - T ) x \| } \over { \| x \| }} < \epsilon ∥ x ∥ ∥ ( T n − T ) x ∥ < ϵ ,
( T n − T ) ∈ B ( X , Y )
( T_{n} - T ) \in B(X,Y)
( T n − T ) ∈ B ( X , Y )
Meanwhile, Part 1 showed that B ( X , Y ) B(X,Y) B ( X , Y ) is a vector space,
T = T n − ( T n − T ) ∈ B ( X , Y )
T = T_{n} - ( T_{n} - T ) \in B(X,Y)
T = T n − ( T n − T ) ∈ B ( X , Y )
Now, considering ∥ x ∥ = 1 \| x \| = 1 ∥ x ∥ = 1 , for all x ∈ X x \in X x ∈ X , since ∥ ( T n − T ) x ∥ ∥ x ∥ < ϵ \displaystyle {{ \| ( T_{n} - T ) x \| } \over { \| x \| }} < \epsilon ∥ x ∥ ∥ ( T n − T ) x ∥ < ϵ ,
∥ T n − T ∥ = sup x ∈ X ∥ x ∥ = 1 ∥ ( T n − T ) x ∥ ∥ x ∥ < ε
\| T_{n} - T \| = \sup\limits_{\substack{x\in X \\ \left\| x \right\|=1 }} {{ \| ( T_{n} - T ) x \| } \over { \| x \| }} < \varepsilon
∥ T n − T ∥ = x ∈ X ∥ x ∥ = 1 sup ∥ x ∥ ∥ ( T n − T ) x ∥ < ε
Every Cauchy sequence { T n } n ∈ N \left\{ T_{n} \right\}_{n \in \mathbb{N}} { T n } n ∈ N , when n → ∞ n \to \infty n → ∞ , converges to some T ∈ B ( X , Y ) T \in B(X,Y) T ∈ B ( X , Y ) , so B ( X , Y ) B(X,Y) B ( X , Y ) is complete.
Part 3.
B ( X , Y ) B(X,Y) B ( X , Y ) is a complete normed space , hence a Banach space .
■