logo

Properties of Linear Operators 📂Banach Space

Properties of Linear Operators

Theorem 1

T:(X,X)(Y,Y)T : (X , \left\| \cdot \right\|_{X}) \to ( Y , \left\| \cdot \right\|_{Y} ) is called a linear operator.

(a) If TT is bounded, for all xXx \in X, T(x)YTxX\left\| T(x) \right\|_{Y} \le \left\| T \right\| \left\| x \right\|_{X}

(b) TT is continuous     \iff TT is bounded

(c) If XX is a finite-dimensional space, then TT is continuous.

(d) If YY is a Banach space, then (B(X,Y),)( B(X,Y) , \| \cdot \| ) is a Banach space.

Explanation

B(X,Y)B(X,Y) is the space of bounded linear operators, so by (b), it is known that all operators in this space are continuous. Being linear is useful, but if it is not only continuous but also complete, it is definitely a very good space.

(a) is widely used, and if there are no major problems, it is usually just written as TxTx\| Tx \| \le \| T \| \| x \| .

(d) In norm \| \cdot \| is the operator norm.

Proof

(a)

Strategy: Use the fact that xX\| x \|_{X} is a scalar to go in and out of TT.


Since TT is bounded, there exists some c>0c> 0 such that

T(x)YxXc {{ \| T(x) \|_{Y} } \over { \| x \|_{X} }} \le c

Since xX\| x \|_{X} is a scalar and TT is linear,

T(x)YxX=1xXT(x)Y=T(xxX)Y {{ \| T(x) \|_{Y} } \over { \| x \|_{X} }} =\left\| {{1} \over {\| x \|_{X} }} T \left( x \right) \right\|_{Y} = \left\| T \left( {{x} \over {\| x \|_{X} }} \right) \right\|_{Y}

From the definition of operator norm, since T=supxXx=1T(x)Y\left\| T \right\| = \sup \limits_{\substack{x\in X \\ \left\| x \right\|=1 }} \left\| T(x) \right\|_{Y},

T(x)YxX=T(xxX)YsupxXx=1T(x)Y=T {{ \| T(x) \|_{Y} } \over { \| x \|_{X} }} = \left\| T \left( {{x} \over {\| x \|_{X} }} \right) \right\|_{Y} \le \sup \limits_{\substack{x\in X \\ \left\| x \right\|=1 }} \left\| T(x) \right\|_{Y} = \| T \|

Multiplying both sides by the scalar xX\| x \|_{X} gives

T(x)YTxX \| T(x) \|_{Y} \le \| T \| \| x \|_{X}

(b)

Strategy: Direct deduction using epsilon-delta argument. (    )(\implies) employs reductio ad absurdum, and according to continuity, it constructs a sequence that would be a contradiction to the assumption.


  • (    )(\impliedby)

    If T=0T = 0, it’s naturally continuous, so consider the case when T0T \ne 0. For any x0Xx_{0} \in X, let’s say xx0<δ\| x - x_{0} \| < \delta.

    Since TT is a bounded linear operator, by (a)

    TxTx0=T(xx0)Txx0<Tδ \| Tx - Tx_{0} \| = \| T ( x - x_{0} ) \| \le \| T \| \| x - x_{0} \| < \| T \| \delta

    For any ε>0\varepsilon > 0, if we set δ=εT\displaystyle \delta = {{ \varepsilon } \over { \| T \| }}, then TxTx0<ε\| Tx - Tx_{0} \| < \varepsilon, so TT is continuous.

  • (    )(\implies)

    If we assume that T=\| T \| = \infty,

    xn=1 \| x_{n} \| = 1

    limnTxn= \lim_{n \to \infty} \| T x_{n} \| = \infty

    There exists a sequence of XX, {xn}nN\left\{ x_{n} \right\}_{ n \in \mathbb{N} }, such that defining zn:=xnTxn\displaystyle z_{n} := {{x_{n}} \over { \sqrt{ \| Tx_{n} \| } }},

    limnzn=0 \lim_{n \to \infty} z_{n} = 0

    Since TT is continuous,

    0=limnT(0)=T(limnzn)=limnT(zn)=limnT(xnTxn)=limnT(xn)= 0 = \lim_{n \to \infty} \| T( 0 ) \| = \left\| T \left( \lim_{n \to \infty} z_{n} \right) \right\| = \lim_{n \to \infty} \| T( z_{n} ) \| = \lim_{n \to \infty} \left\| T \left( {{x_{n}} \over { \sqrt{ \| Tx_{n} \| } }} \right) \right\|= \lim_{n \to \infty} \sqrt{ \| T(x_{n} ) \| } = \infty

    This is a contradiction to the assumption, so TT is bounded.

(c)

Strategy: To show continuity according to (b), it is sufficient to demonstrate boundedness. Using the properties of finite-dimensional spaces, showing that TT is bounded is relatively straightforward.


If we say dimX=n\dim X = n, then XX has a basis {e1,,en}\left\{ e_{1} , \cdots , e_{n} \right\} and any xXx \in X for tiCt_{i} \in \mathbb{C} is

x=i=1ntiei x = \sum_{i=1}^{n} t_{i} e_{i}

Since TT is a linear operator,

Tx=T(i=1ntiei)=i=1ntiT(ei) Tx = T \left( \sum_{i=1}^{n} t_{i} e_{i} \right) = \sum_{i=1}^{n} | t_{i} | T \left( e_{i} \right)

Taking the norm Y\| \cdot \|_{Y} on both sides gives

TxY=i=1ntiT(ei)Yi=1ntiT(ei)Ymax1inT(ei)Yi=1nti \begin{equation} \| Tx \|_{Y} = \left\| \sum_{i=1}^{n} t_{i} T \left( e_{i} \right) \right\|_{Y} \le \sum_{i=1}^{n} | t_{i} | \| T ( e_{i} ) \|_{Y} \le \max_{1 \le i \le n} \| T ( e_{i} ) \|_{Y} \sum_{i=1}^{n} | t_{ i} | \end{equation}

Now let’s define a new norm i=1ntiei1:=i=1nti\displaystyle \left\| \sum_{i=1}^{n} t_{i} e_{i} \right\|_{1} := \sum_{i=1}^{n} | t_{ i} |. Since all norms defined in a finite-dimensional vector space are equivalent,

Ci=1ntiei1i=1ntieiX C \left\| \sum_{i=1}^{n} t_{i} e_{i} \right\|_{1} \le \left\| \sum_{i=1}^{n} t_{i} e_{i} \right\|_{X}

There exists some C>0C>0 that satisfies. Therefore,

i=1nti=i=1ntiei11Ci=1ntieiX=1CxX \sum_{i=1}^{n} | t_{ i} | = \left\| \sum_{i=1}^{n} t_{i} e_{i} \right\|_{1} \le {{1} \over {C}} \left\| \sum_{i=1}^{n} t_{i} e_{i} \right\|_{X} = {{1} \over {C}} \| x \|_{X}

Applying to (1)(1) gives

TxY1Cmax1inT(ei)YxX \| T x \|_{Y} \le {{1} \over {C}} \max_{1 \le i \le n} \| T(e_{i} ) \|_{Y} \cdot \| x \|_{X}

Therefore, T1Cmax1inT(ei)Y<\displaystyle \| T \| \le {{1} \over {C}} \max_{1 \le i \le n} \| T(e_{i} ) \|_{Y} < \infty but since TT is a bounded linear operator, by (b), it is continuous.

(d)

Strategy: Convert the discussion to T(x)T(X)YT(x) \in T(X) \subset Y by drawing out completeness in Banach space YY.


  • Part 1. For the normed space (B(X,Y),)( B(X,Y) , \| \cdot \| ), \| \cdot \| satisfies the following conditions for TB(X,Y)T \in B(X,Y),

    (i): T=supxXx=1T(x)0 \| T \| = \sup\limits_{\substack{x\in X \\ \left\| x \right\|=1 }} \| T(x) \| \ge 0

    (ii): T=supxXx=1T(x)=0    T=0 \| T \| = \sup\limits_{\substack{x\in X \\ \left\| x \right\|=1 }} \| T(x) \| = 0 \iff T = 0

    (iii): λT=supxXx=1λT(x)=supxXx=1λT(x)=λsupxXx=1T(x) \| \lambda T \| = \sup\limits_{\substack{x\in X \\ \left\| x \right\|=1 }} \| \lambda T(x) \| =\sup\limits_{\substack{x\in X \\ \left\| x \right\|=1 }} \lambda \| T(x) \| = \lambda \sup\limits_{\substack{x\in X \\ \left\| x \right\|=1 }} \| T(x) \|

    (iv): T1+T2=supxXx=1(T1+T2)(x)supxXx=1(T1(x)+T2(x))supxXx=1T1(x)+supxXx=1T2(x) \begin{align*} \| T_{1} + T_{2} \| =& \sup\limits_{\substack{x\in X \\ \left\| x \right\|=1 }} \| (T_{1} + T_{2})(x) \| \\ \le & \sup\limits_{\substack{x\in X \\ \left\| x \right\|=1 }} \left( \| T_{1} (x) \| + \| T_{2}(x) \| \right) \\ \le & \sup\limits_{\substack{x\in X \\ \left\| x \right\|=1 }} \| T_{1}(x) \| + \sup\limits_{\substack{x\in X \\ \left\| x \right\|=1 }} \| T_{2}(x) \| \end{align*}

  • Part 2. Completeness

    Defining a Cauchy sequence of B(X,Y)B(X,Y), {Tn}nN\left\{ T_{n} \right\}_{n \in \mathbb{N}}, for any ε>0\varepsilon > 0,

    TnTm<ε \| T_{n} - T_{m} \| < \varepsilon

    According to (a), for all xXx \in X,

    TnxTmx=(TnTm)xTnTmx<εx \| T_{n} x - T_{m} x \| = \| ( T_{n} - T_{m} ) x \| \le \| T_{n} - T_{m} \| \| x \| < \varepsilon \| x \|

    Therefore, {Tnx}\left\{ T_{n}x \right\} is a Cauchy sequence in YY. Since YY is assumed to be complete, for some TxYTx \in Y

    limmTmx=Tx \lim_{m \to \infty } T_{m}x = Tx

    Again, according to (a), for all xXx \in X,

    TnxTx=TnxlimmTmx=limmTnxTmx<εx \| T_{n} x - T x \| = \left\| T_{n} x - \lim_{m \to \infty} T_{m} x \right\| = \lim_{m \to \infty} \left\| T_{n} x - T_{m} x \right\| < \varepsilon \| x \|

    For all xXx \in X, since (TnT)xx<ϵ\displaystyle {{ \| ( T_{n} - T ) x \| } \over { \| x \| }} < \epsilon,

    (TnT)B(X,Y) ( T_{n} - T ) \in B(X,Y)

    Meanwhile, Part 1 showed that B(X,Y)B(X,Y) is a vector space,

    T=Tn(TnT)B(X,Y) T = T_{n} - ( T_{n} - T ) \in B(X,Y)

    Now, considering x=1\| x \| = 1, for all xXx \in X, since (TnT)xx<ϵ\displaystyle {{ \| ( T_{n} - T ) x \| } \over { \| x \| }} < \epsilon,

    TnT=supxXx=1(TnT)xx<ε \| T_{n} - T \| = \sup\limits_{\substack{x\in X \\ \left\| x \right\|=1 }} {{ \| ( T_{n} - T ) x \| } \over { \| x \| }} < \varepsilon

    Every Cauchy sequence {Tn}nN\left\{ T_{n} \right\}_{n \in \mathbb{N}} , when nn \to \infty, converges to some TB(X,Y)T \in B(X,Y), so B(X,Y)B(X,Y) is complete.

  • Part 3.

    B(X,Y)B(X,Y) is a complete normed space, hence a Banach space.


  1. Kreyszig. (1989). Introductory Functional Analysis with Applications: p92~97, 118~119. ↩︎