logo

How to Move the Big O Notation from Denominator to Numerator 📂Lemmas

How to Move the Big O Notation from Denominator to Numerator

Theorem

The following holds for a0a \ne 0, p>0p>0, and nNn \in \mathbb{N}. 1a+O(hn)p=1ap+O(hn) {{1} \over { \sqrt[p]{a + O ( h^n ) } }} = {{1} \over { \sqrt[p]{a } }}+ O(h^n)

Explanation

It serves as a handy lemma for converting complex denominators into cleaner forms.

If there were no constant term aa, it could neatly rise to 1O(hn)p=O(hnp)\displaystyle {{1} \over { \sqrt[p]{ O ( h^n ) } }} = O \left( h^{ - {{n} \over {p}} } \right) even without the lemma, but that is usually not very useful.

Proof

Let’s set q:=1p\displaystyle q := {{1} \over {p}} for 1a+O(hn)p=1a+bhnp=(a+bhn)1p {{1} \over { \sqrt[p]{a + O ( h^n ) } }} = {{1} \over { \sqrt[p]{a + b h^n } }} = (a + b h^n )^{-{{1} \over {p}}} and define the function f(h):=(a+bhn)q\displaystyle f(h) := (a + b h^n )^{-q}.

When Maclaurin expanding for ff, f(h)=f(0)+hf(0)+h22f(0)+h36f(3)(0)+ f(h) = f(0) + h f '(0) + {{h^2} \over {2}} f ''(0) + {{h^3} \over {6}} f^{(3)}(0) + \cdots Since f(h)=(a+bhn)q\displaystyle f(h) = (a + b h^n )^{-q}, f(0)=(a+b0n)q=1ap f(0) = (a + b \cdot 0^n )^{-q} = {{1} \over { \sqrt[p]{a } }} Meanwhile, f(h)=qbnhn1(a+bhn)q1 f ' (h) = -qbnh^{n-1} (a+ bh^{n})^{-q-1} Therefore, it’s f(0)=0f ' (0) = 0, and f(h)=qbn(n1)hn2(a+bhn)q1+bnhn1(q1)bnhn1(a+bhn)q2 f '' (h) = -qbn(n-1)h^{n-2} (a+ bh^{n})^{-q-1} + bnh^{n-1} (-q-1) bnh^{n-1} (a+ bh^{n})^{-q-2} Hence, it’s f(0)=0f '' (0) = 0. Proceeding this way, when calculating the kkth derivative f(k)f^{(k)}, we know that for k=2,3,,(n1)k=2,3, \cdots, (n-1) it’s f(k)(0)=0f^{(k)}(0) = 0. For some g(h)g(h), f(n)(h)=qbn!hnn(a+bhn)q1+hg(h) f^{(n)}(h) = -qbn!h^{n-n} (a+ bh^{n})^{-q-1} + h g(h) Therefore, f(n)(h)=qbn!1aq+1 f^{(n)} (h) = -qbn! {{1} \over { \sqrt[q+1]{a } }} Thus, f(h)=1ap+0++0hnn!qbn!1aq+1+h(n+1)(n+1)!f(n+1)(0)+ f(h) ={{1} \over { \sqrt[p]{a } }} + 0 + \cdots + 0 - {{h^n} \over {n!}} qbn! {{1} \over { \sqrt[q+1]{a } }} + {{h^{ (n+1) } } \over {(n+1)! }} f^{(n+1)}(0) + \cdots After 00, grouping all terms that appear later under hnh^n, we obtain the following. 1a+O(hn)p=1ap+O(hn) {{1} \over { \sqrt[p]{a + O ( h^n ) } }} = {{1} \over { \sqrt[p]{a } }}+ O(h^n)