logo

Proof that the p-norm becomes the maximum norm when p=∞ 📂Banach Space

Proof that the p-norm becomes the maximum norm when p=∞

Theorem

Let’s define the sequence spaces lpl^{p} and 1<p0<1 < p_{0} < \infty such that {xn}nNlp0\left\{ x_{n} \right\}_{n \in \mathbb{N} } \in \mathcal{l}^{p_{0}}. limp(nNxnp)1p=supnNxn \lim_{p \to \infty} \left( \sum_{n \in \mathbb{N} } | x_{n} |^{p} \right)^{ {{1} \over {p}} } = \sup_{n \in \mathbb{N}} | x_{ n } |

Explanation

Despite being encountered early in analysis or linear algebra, the reason why the maximum norm is related to \infty is often not well explained. Especially, professors tend to overlook this because it seems so obvious to them, but if it does not resonate, make sure to delve deeper.

Visualization 1

pnorm.svg

No need for a thousand words. The picture above asymptotically converges to the shape shown when plotting the pp-norm unit ball in the Euclidean space given R2\mathbb{R}^{2}.

Intuitive Mathematical Development

Approaching conceptually with mathematical formulas can be more helpful. When xRn\mathbf{x} \in \mathbb{R}^{n}, xp\left\| \mathbf{x} \right\|_{p} can be expressed as xp=x1p++xnpp \left\| \mathbf{x} \right\|_{p} = \sqrt[p]{\left| x_{1} \right|^{p} + \cdots + \left| x_{n} \right|^{p}} If the largest value among x1,,xn\left| x_{1} \right|, \cdots , \left| x_{n} \right| is xˉ=maxk=1,,nxk\bar{x} = \max_{k = 1 , \cdots , n} \left| x_{k} \right|, then the mathematical development might seem as follows. limpxp=limpx1p++xnpp=limpxˉp(x1xˉp++xnxˉp)p=limpxˉpp(x1xˉp++xnxˉp)p=?xˉlimp0++1++0p=xˉlimpm1p=maxk=1,,nxk1 \begin{align*} \lim_{p \to \infty} \left\| x \right\|_{p} =& \lim_{p \to \infty} \sqrt[p]{\left| x_{1} \right|^{p} + \cdots + \left| x_{n} \right|^{p}} \\ =& \lim_{p \to \infty} \sqrt[p]{ \bar{x}^{p} \left( \left| {\frac{ x_{1} }{ \bar{x} }} \right|^{p} + \cdots + \left| {\frac{ x_{n} }{ \bar{x} }} \right|^{p} \right) } \\ =& \lim_{p \to \infty} \sqrt[p]{\bar{x}^{p}} \cdot \sqrt[p]{ \left( \left| {\frac{ x_{1} }{ \bar{x} }} \right|^{p} + \cdots + \left| {\frac{ x_{n} }{ \bar{x} }} \right|^{p} \right) } \\ \overset{?}{=} & \bar{x} \lim_{p \to \infty} \sqrt[p]{ 0 + \cdots + 1 + \cdots + 0 } \\ =& \bar{x} \lim_{p \to \infty} m^{{\frac{ 1 }{ p }}} \\ =& \max_{k = 1 , \cdots , n} \left| x_{k} \right| \cdot 1 \end{align*} Although the rigorous proof does not proceed in this manner, having such intuition makes a significant difference in grasping the maximum norm.

Proof

Let’s say M:=supnNxn\displaystyle M := \sup_{n \in \mathbb{N}} | x_{ n } |. If M=0M=0 then because of 0=limp(nNxnp)1p=supnNxn=0\displaystyle 0 = \lim_{p \to \infty} \left( \sum_{n \in \mathbb{N} } | x_{n} |^{p} \right)^{ {{1} \over {p}} } = \sup_{n \in \mathbb{N}} | x_{ n } | = 0, let’s assume M>0M > 0. Defining a new sequence as yn:=xnM\displaystyle y_{n} : = {{x_{n}} \over {M}}, since supnNyn=1\displaystyle \sup_{n \in \mathbb{N}} | y_{ n } | = 1 and {yn}nNlp0\left\{ y_{n} \right\}_{ n \in \mathbb{N} } \in \mathcal{l}^{p_{0}}, to show limp(nNxnp)1p=M\displaystyle \lim_{p \to \infty} \left( \sum_{n \in \mathbb{N} } | x_{n} |^{p} \right)^{ {{1} \over {p}} } = M , it is sufficient to demonstrate limp(nNxnMp)1p=1\displaystyle \lim_{p \to \infty} \left( \sum_{n \in \mathbb{N} } \left| {{x_{n} } \over {M}} \right|^{p} \right)^{ {{1} \over {p}} } = 1.

  • Part 1. lim infp(nNynp)1p1\displaystyle \liminf_{p \to \infty } \left( \sum_{n \in \mathbb{N} } | y_{n} |^{p} \right)^{ {{1} \over {p}} } \ge 1

    Since supnNyn=1\displaystyle \sup_{n \in \mathbb{N}} | y_{ n } | = 1, for any ε>0\varepsilon > 0, there exists n0Nn_{0} \in \mathbb{N} satisfying yn0>1ε| y_{n_{0} } | > 1 - \varepsilon. As lim infp(nNynp)1pyn0>1ε\displaystyle \liminf_{p \to \infty } \left( \sum_{n \in \mathbb{N} } | y_{n} |^{p} \right)^{ {{1} \over {p}} } \ge | y_{ n_{0} } | > 1 - \varepsilon holds for all ε>0\varepsilon > 0,

    lim infp(nNynp)1p1 \liminf_{p \to \infty } \left( \sum_{n \in \mathbb{N} } | y_{n} |^{p} \right)^{ {{1} \over {p}} } \ge 1

  • Part 2. lim supp(nNynp)1p1\displaystyle \limsup_{p \to \infty} \left( \sum_{ n \in \mathbb{N} } | y_{n} |^{p} \right)^{ {{1} \over {p}} } \le 1

    Since {yn}nNlp0\left\{ y_{n} \right\}_{ n \in \mathbb{N} } \in \mathcal{l}^{p_{0}}, there exists NNN \in \mathbb{N} satisfying n>Nynp0<1\displaystyle \sum_{ n > N } | y_{n} |^{p_{0}} < 1. If we say p>p0p > p_{0},

    n>Nynp<n>Nynp0<1 \sum_{ n > N } | y_{n} |^{p} < \sum_{ n > N } | y_{n} |^{p_{0}} < 1

    Because (nNynp)1p(y1p++yNp+1)1p(N+1)1p\displaystyle \left( \sum_{ n \in \mathbb{N} } | y_{n} |^{p} \right)^{ {{1} \over {p}} } \le \left( | y_{1} |^{p} + \cdots + | y_{N} |^{p} + 1 \right)^{ {{1} \over {p}} } \le \left( N + 1 \right)^{ {{1} \over {p}} } holds,

    lim supp(nNynp)1plim supp(N+1)1p=1 \limsup_{p \to \infty} \left( \sum_{ n \in \mathbb{N} } | y_{n} |^{p} \right)^{ {{1} \over {p}} } \le \limsup_{p \to \infty} \left( N + 1 \right)^{ {{1} \over {p}} } = 1

  • Part 3.
    Following Part 1. and Part 2., lim supp(nNynp)1p1lim infp(nNynp)1p \limsup_{p \to \infty} \left( \sum_{ n \in \mathbb{N} } | y_{n} |^{p} \right)^{ {{1} \over {p}} } \le 1 \le \liminf_{p \to \infty } \left( \sum_{n \in \mathbb{N} } | y_{n} |^{p} \right)^{ {{1} \over {p}} } as a result, we obtain the following. limp(nNynp)1p=1 \lim_{p \to \infty} \left( \sum_{ n \in \mathbb{N} } | y_{n} |^{p} \right)^{ {{1} \over {p}} } =1