Mean and Variance of the Poisson Distribution
📂Probability DistributionMean and Variance of the Poisson Distribution
X∼Poi(λ) Surface
E(X)=λVar(X)=λ
Derivation
Strategy: Directly deduce from the definition of the Poisson distribution. The trick of splitting factorials and series is important.
Definition of Poisson Distribution: For λ>0, an discrete probability distribution that has the following probability mass function Poi(λ) is called a Poisson distribution.
p(x)=x!e−λλx,x=0,1,2,⋯
Mean
E(X)======x=0∑∞xx!λxe−λe−λx=0∑∞xx!λxe−λx=1∑∞(x−1)!λ⋅λx−1λe−λx=1∑∞(x−1)!λx−1λe−λeλλ
■
Variance
E(X2)=========x=0∑∞x2x!λxe−λe−λx=1∑∞x(x−1)!λxe−λx=1∑∞(x−1)!(x−1+1)λxe−λx=1∑∞(x−1)!(x−1)λx+λxe−λx=1∑∞{(x−1)!(x−1)λx+(x−1)!λx}e−λ{x=2∑∞(x−2)!λx+x=1∑∞(x−1)!λx}e−λ{x=2∑∞(x−2)!λ2⋅λx−2+x=1∑∞(x−1)!λ⋅λx−1}e−λ(λ2eλ+λeλ)λ2+λ
Therefore
Var(X)=E(X2)−{E(X)}2=(λ2+λ)−λ2=λ
■