L2 Space
📂Lebesgue Spaces L2 Space Definition A function space L 2 L^{2} L 2 is defined as follows.
L 2 ( E ) : = { f : ( ∫ E ∣ f ∣ 2 d m ) 1 2 < ∞ }
L^{2} (E) := \left\{ f : \left( \int_{E} | f |^2 dm \right)^{{1} \over {2}} < \infty \right\}
L 2 ( E ) := { f : ( ∫ E ∣ f ∣ 2 d m ) 2 1 < ∞ }
Properties L 2 L^{2} L 2 is a metric space . The metric is defined as following.
d ( f , g ) : = ( ∫ ∣ f ( x ) − g ( x ) ∣ 2 d x ) 1 2 = ∥ f − g ∥ 2 = ⟨ f − g , f − g ⟩
d(f,g) := \left( \int \left| f(x) - g(x) \right|^{2}dx \right)^{\frac{1}{2}} = \left\| f-g \right\|_{2} = \sqrt{\braket{f-g, f-g}}
d ( f , g ) := ( ∫ ∣ f ( x ) − g ( x ) ∣ 2 d x ) 2 1 = ∥ f − g ∥ 2 = ⟨ f − g , f − g ⟩ L 2 L^{2} L 2 is a vector space .L 2 L^{2} L 2 is a normed space . The norm is defined as following.
∥ f ∥ 2 : = ( ∫ ∣ f ( x ) ∣ 2 d x ) 1 2 = ⟨ f , f ⟩
\left\| f \right\|_{2} := \left( \int \left| f(x) \right|^{2}dx \right)^{\frac{1}{2}} = \sqrt{\braket{f,f}}
∥ f ∥ 2 := ( ∫ ∣ f ( x ) ∣ 2 d x ) 2 1 = ⟨ f , f ⟩ L 2 L^{2} L 2 is a complete space .L 2 L^{2} L 2 is an inner product space . The inner product is defined as following.
⟨ f , g ⟩ : = ∫ f ( x ) ‾ g ( x ) d x
\braket{f, g} := \int \overline{f(x)}g(x)dx
⟨ f , g ⟩ := ∫ f ( x ) g ( x ) d x Description The space L 2 L^{2} L 2 is a special case when it is p = 2 p=2 p = 2 of the L p L^{p} L p space , and it is the only space among L p L^{p} L p spaces where an inner product is defined. A complete inner product space is specifically called a Hilbert space . Therefore, L 2 L^{2} L 2 is a Hilbert space. Hilbert spaces are important spaces that appear in various fields including partial differential equations and quantum mechanics .
For a generalized proof about L p L^{p} L p space, refer here .
Proof 3. Definition of Norm
Let’s call V V V a vector space on F \mathbb{F} F . If a function ∥ ⋅ ∥ : V → F \left\| \cdot \right\| : V \to \mathbb{F} ∥ ⋅ ∥ : V → F satisfies the following three conditions for u , v ∈ V \mathbf{u}, \mathbf{v} \in V u , v ∈ V and k ∈ F k \in \mathbb{F} k ∈ F , then it is defined as the norm on V V V .
Positivity : ∥ u ∥ ≥ 0 \left\| \mathbf{u} \right\| \ge 0 ∥ u ∥ ≥ 0 and u = 0 ⟺ ∥ u ∥ = 0 \mathbf{u} = \mathbb{0} \iff \left\| \mathbf{u} \right\| = 0 u = 0 ⟺ ∥ u ∥ = 0 Homogeneity : ∥ k u ∥ = ∣ k ∣ ∥ u ∥ \left\|k \mathbf{u} \right\| = | k | \left\| \mathbf{u} \right\| ∥ k u ∥ = ∣ k ∣ ∥ u ∥ Triangle inequality : ∥ u + v ∥ ≤ ∥ v ∥ + ∥ u ∥ \left\| \mathbf{u} + \mathbf{v}\right\| \le \left\|\mathbf{v} \right\| + \left\| \mathbf{u} \right\| ∥ u + v ∥ ≤ ∥ v ∥ + ∥ u ∥ Let’s define the norm of L 2 L ^{2} L 2 as follows ∥ f ∥ 2 : = ( ∫ E ∣ f ∣ 2 d m ) 1 2 \displaystyle \left\| f \right\|_{2} := \left( \int_{E} | f |^2 dm \right)^{{1} \over {2}} ∥ f ∥ 2 := ( ∫ E ∣ f ∣ 2 d m ) 2 1 .
Part 1. Positivity
Since ∣ f ∣ ≥ 0 | f | \ge 0 ∣ f ∣ ≥ 0 , if ∥ f ∥ 2 ≥ 0 \left\| f \right\|_{2} \ge 0 ∥ f ∥ 2 ≥ 0 almost everywhere, then ∥ f ∥ 2 = 0 \left\| f \right\|_{2} = 0 ∥ f ∥ 2 = 0 . Conversely, if ∥ f ∥ 2 = 0 \left\| f \right\|_{2} = 0 ∥ f ∥ 2 = 0 , then almost everywhere, it must be f = 0 f = 0 f = 0 .
Part 2. Homogeneity
∥ c f ∥ 2 = ( ∫ E ∣ c f ∣ 2 d m ) 1 2 = ( ∣ c ∣ 2 ∫ E ∣ f ∣ 2 d m ) 1 2 = ∣ c ∣ ( ∫ E ∣ f ∣ 2 d m ) 1 2 = ∣ c ∣ ∥ f ∥ 2
\left\| c f \right\|_{2} = \left( \int_{E} | c f |^2 dm \right)^{{1}\over {2}} =\left( |c|^2 \int_{E} | f |^2 dm \right)^{{1}\over {2}} = |c| \left( \int_{E} | f |^2 dm \right)^{{1}\over {2}} = |c| \left\| f\right\|_{2}
∥ c f ∥ 2 = ( ∫ E ∣ c f ∣ 2 d m ) 2 1 = ( ∣ c ∣ 2 ∫ E ∣ f ∣ 2 d m ) 2 1 = ∣ c ∣ ( ∫ E ∣ f ∣ 2 d m ) 2 1 = ∣ c ∣ ∥ f ∥ 2
Part 3. Triangle inequality
∥ f + g ∥ 2 2 = ∫ E ∣ f + g ∣ 2 d m = ∫ E ( f + g ) ( f + g ) ‾ d m = ∫ E ∣ f ∣ 2 d m + ∫ E ( f g ‾ + f ‾ g ) d m + ∫ E ∣ g ∣ 2 d m
\begin{align*}
\left\| f + g \right\|_{2}^{2} =& \int_{E} | f + g |^2 dm
\\ =& \int_{E} ( f + g ) \overline{( f + g )} dm
\\ =& \int_{E} | f |^2 dm + \int_{E} ( f \overline{g} + \overline{f} g ) dm +\int_{E} | g |^2 dm
\end{align*}
∥ f + g ∥ 2 2 = = = ∫ E ∣ f + g ∣ 2 d m ∫ E ( f + g ) ( f + g ) d m ∫ E ∣ f ∣ 2 d m + ∫ E ( f g + f g ) d m + ∫ E ∣ g ∣ 2 d m
By the Cauchy-Schwarz inequality , we get the following.
∫ E ( f g ‾ + f ‾ g ) d m ≤ 2 ∫ E ∣ f g ∣ d m ≤ 2 ∣ f ∣ 2 ∣ g ∣ 2 = ∣ f + g ∣ 2 2 ≤ ∣ f ∣ 2 + 2 ∣ f ∣ 2 ∣ g ∣ 2 + ∣ g ∣ 2 = ( ∣ f ∣ 2 + ∣ g ∣ 2 ) 2
\begin{align*}
\int_{E} ( f \overline{g} + \overline{f} g ) dm \le & 2 \int_{E} | fg | dm \le 2 | f |_{2} | g |_{2}
\\ =& | f + g | _{2}^{2} \le | f | _{2} + 2 | f | _{2} | g | _{2} + | g | _{2}
\\ =& \left( | f |_{2} + | g |_{2} \right)^{2}
\end{align*}
∫ E ( f g + f g ) d m ≤ = = 2 ∫ E ∣ f g ∣ d m ≤ 2∣ f ∣ 2 ∣ g ∣ 2 ∣ f + g ∣ 2 2 ≤ ∣ f ∣ 2 + 2∣ f ∣ 2 ∣ g ∣ 2 + ∣ g ∣ 2 ( ∣ f ∣ 2 + ∣ g ∣ 2 ) 2
To summarize
∥ f + g ∥ 2 ≤ ∥ f ∥ 2 + ∣ g ∣ 2
\left\| f + g \right\|_{2} \le \left\| f \right\|_{2} + | g |_{2}
∥ f + g ∥ 2 ≤ ∥ f ∥ 2 + ∣ g ∣ 2
■
5. Definition of Inner Product
Let us call H H H a vector space . A function that satisfies the following conditions for x , y , z ∈ H x,y,z \in H x , y , z ∈ H and α , β ∈ C \alpha, \beta \in \mathbb{C} α , β ∈ C
⟨ ⋅ , ⋅ ⟩ : H × H → C
\langle \cdot , \cdot \rangle : H \times H \to \mathbb{C}
⟨ ⋅ , ⋅ ⟩ : H × H → C
is defined as inner product , and ( H , ⟨ ⋅ , ⋅ ⟩ ) \left( H, \langle \cdot ,\cdot \rangle \right) ( H , ⟨ ⋅ , ⋅ ⟩ ) is called an inner product space .
Linearity: ⟨ α x + β y , z ⟩ = α ⟨ x , z ⟩ + β ⟨ y , z ⟩ \langle \alpha x + \beta y ,z \rangle =\alpha \langle x,z\rangle + \beta \langle y,z\rangle ⟨ αx + β y , z ⟩ = α ⟨ x , z ⟩ + β ⟨ y , z ⟩ Conjugate Symmetry: ⟨ x , y ⟩ = ⟨ y , x ⟩ ‾ \langle x,y \rangle = \overline{ \langle y,x \rangle} ⟨ x , y ⟩ = ⟨ y , x ⟩ Positive-definiteness: ⟨ x , x ⟩ ≥ 0 and ⟨ x , x ⟩ = 0 ⟺ x = 0 \langle x,x \rangle \ge 0 \quad \text{and} \quad \langle x,x \rangle = 0\iff x=0 ⟨ x , x ⟩ ≥ 0 and ⟨ x , x ⟩ = 0 ⟺ x = 0 Let’s define the inner product of L 2 L ^{2} L 2 as follows ⟨ f , g ⟩ : = ∫ E f g ‾ d m \displaystyle \langle f , g \rangle := \int_{E} f \overline{g} dm ⟨ f , g ⟩ := ∫ E f g d m .
Part 1. Linearity
⟨ f + g , h ⟩ = ∫ E ( f + g ) g ‾ d m = ∫ E f g ‾ d m + ∫ E g g ‾ d m = ⟨ f , h ⟩ + ⟨ g , h ⟩
\langle f + g , h \rangle = \int_{E} ( f + g ) \overline{g} dm = \int_{E} f \overline{g} dm + \int_{E} g \overline{g} dm = \langle f , h \rangle + \langle g , h \rangle
⟨ f + g , h ⟩ = ∫ E ( f + g ) g d m = ∫ E f g d m + ∫ E g g d m = ⟨ f , h ⟩ + ⟨ g , h ⟩
And
⟨ c f , g ⟩ = ∫ E c f g ‾ d m = c ∫ E f g ‾ d m = c ⟨ f , g ⟩
\langle c f , g \rangle = \int_{E} c f \overline{g} dm = c \int_{E} f \overline{g} dm = c \langle f , g \rangle
⟨ c f , g ⟩ = ∫ E c f g d m = c ∫ E f g d m = c ⟨ f , g ⟩
Part 2. Conjugate Symmetry
⟨ f , g ⟩ = ∫ E f g ‾ d m = ∫ E f ‾ g d m ‾ = ∫ E g f ‾ d m ‾ = ⟨ f , g ⟩ ‾
\langle f , g \rangle = \int_{E} f \overline{g} dm = \overline{ \int_{E} \overline{f} g dm} = \overline{ \int_{E} g \overline{f} dm} = \overline{ \langle f , g \rangle }
⟨ f , g ⟩ = ∫ E f g d m = ∫ E f g d m = ∫ E g f d m = ⟨ f , g ⟩
Part 3. Positive-definiteness
⟨ f , f ⟩ = ∫ E f f ‾ d m = ∫ E ∣ f ∣ 2 d m = ∣ f ∣ 2
\langle f, f \rangle = \int_{E} f \overline{f} dm = \int_{E} | f |^2 dm = \sqrt{ | f |_{2} }
⟨ f , f ⟩ = ∫ E f f d m = ∫ E ∣ f ∣ 2 d m = ∣ f ∣ 2
The proof concludes with Part 1 of Property 3. .
■
See Also