logo

L2 Space 📂Lebesgue Spaces

L2 Space

Definition 1

A function space L2L^{2} is defined as follows.

L2(E):={f:(Ef2dm)12<} L^{2} (E) := \left\{ f : \left( \int_{E} | f |^2 dm \right)^{{1} \over {2}} < \infty \right\}

Properties

  1. L2L^{2} is a metric space. The metric is defined as following. d(f,g):=(f(x)g(x)2dx)12=fg2=fg,fg d(f,g) := \left( \int \left| f(x) - g(x) \right|^{2}dx \right)^{\frac{1}{2}} = \left\| f-g \right\|_{2} = \sqrt{\braket{f-g, f-g}}
  2. L2L^{2} is a vector space.
  3. L2L^{2} is a normed space. The norm is defined as following. f2:=(f(x)2dx)12=f,f \left\| f \right\|_{2} := \left( \int \left| f(x) \right|^{2}dx \right)^{\frac{1}{2}} = \sqrt{\braket{f,f}}
  4. L2L^{2} is a complete space.
  5. L2L^{2} is an inner product space. The inner product is defined as following. f,g:=f(x)g(x)dx \braket{f, g} := \int \overline{f(x)}g(x)dx

Description

The space L2L^{2} is a special case when it is p=2p=2 of the LpL^{p} space, and it is the only space among LpL^{p} spaces where an inner product is defined. A complete inner product space is specifically called a Hilbert space. Therefore, L2L^{2} is a Hilbert space. Hilbert spaces are important spaces that appear in various fields including partial differential equations and quantum mechanics.

For a generalized proof about LpL^{p} space, refer here.

Proof

3.

Definition of Norm

Let’s call VV a vector space on F\mathbb{F}. If a function :VF\left\| \cdot \right\| : V \to \mathbb{F} satisfies the following three conditions for u,vV\mathbf{u}, \mathbf{v} \in V and kFk \in \mathbb{F}, then it is defined as the norm on VV.

  • Positivity: u0\left\| \mathbf{u} \right\| \ge 0 and u=0    u=0\mathbf{u} = \mathbb{0} \iff \left\| \mathbf{u} \right\| = 0
  • Homogeneity: ku=ku\left\|k \mathbf{u} \right\| = | k | \left\| \mathbf{u} \right\|
  • Triangle inequality: u+vv+u\left\| \mathbf{u} + \mathbf{v}\right\| \le \left\|\mathbf{v} \right\| + \left\| \mathbf{u} \right\|

Let’s define the norm of L2L ^{2} as follows f2:=(Ef2dm)12\displaystyle \left\| f \right\|_{2} := \left( \int_{E} | f |^2 dm \right)^{{1} \over {2}}.

  • Part 1. Positivity

    Since f0| f | \ge 0, if f20\left\| f \right\|_{2} \ge 0 almost everywhere, then f2=0\left\| f \right\|_{2} = 0. Conversely, if f2=0\left\| f \right\|_{2} = 0, then almost everywhere, it must be f=0f = 0.

  • Part 2. Homogeneity

    cf2=(Ecf2dm)12=(c2Ef2dm)12=c(Ef2dm)12=cf2 \left\| c f \right\|_{2} = \left( \int_{E} | c f |^2 dm \right)^{{1}\over {2}} =\left( |c|^2 \int_{E} | f |^2 dm \right)^{{1}\over {2}} = |c| \left( \int_{E} | f |^2 dm \right)^{{1}\over {2}} = |c| \left\| f\right\|_{2}

  • Part 3. Triangle inequality

    f+g22=Ef+g2dm=E(f+g)(f+g)dm=Ef2dm+E(fg+fg)dm+Eg2dm \begin{align*} \left\| f + g \right\|_{2}^{2} =& \int_{E} | f + g |^2 dm \\ =& \int_{E} ( f + g ) \overline{( f + g )} dm \\ =& \int_{E} | f |^2 dm + \int_{E} ( f \overline{g} + \overline{f} g ) dm +\int_{E} | g |^2 dm \end{align*}

    By the Cauchy-Schwarz inequality, we get the following.

    E(fg+fg)dm2Efgdm2f2g2=f+g22f2+2f2g2+g2=(f2+g2)2 \begin{align*} \int_{E} ( f \overline{g} + \overline{f} g ) dm \le & 2 \int_{E} | fg | dm \le 2 | f |_{2} | g |_{2} \\ =& | f + g | _{2}^{2} \le | f | _{2} + 2 | f | _{2} | g | _{2} + | g | _{2} \\ =& \left( | f |_{2} + | g |_{2} \right)^{2} \end{align*}

    To summarize

    f+g2f2+g2 \left\| f + g \right\|_{2} \le \left\| f \right\|_{2} + | g |_{2}

5.

Definition of Inner Product

Let us call HH a vector space. A function that satisfies the following conditions for x,y,zHx,y,z \in H and α,βC\alpha, \beta \in \mathbb{C}

,:H×HC \langle \cdot , \cdot \rangle : H \times H \to \mathbb{C}

is defined as inner product, and (H,,)\left( H, \langle \cdot ,\cdot \rangle \right) is called an inner product space.

  • Linearity: αx+βy,z=αx,z+βy,z\langle \alpha x + \beta y ,z \rangle =\alpha \langle x,z\rangle + \beta \langle y,z\rangle
  • Conjugate Symmetry: x,y=y,x\langle x,y \rangle = \overline{ \langle y,x \rangle}
  • Positive-definiteness: x,x0andx,x=0    x=0\langle x,x \rangle \ge 0 \quad \text{and} \quad \langle x,x \rangle = 0\iff x=0

Let’s define the inner product of L2L ^{2} as follows f,g:=Efgdm\displaystyle \langle f , g \rangle := \int_{E} f \overline{g} dm.

  • Part 1. Linearity

    f+g,h=E(f+g)gdm=Efgdm+Eggdm=f,h+g,h \langle f + g , h \rangle = \int_{E} ( f + g ) \overline{g} dm = \int_{E} f \overline{g} dm + \int_{E} g \overline{g} dm = \langle f , h \rangle + \langle g , h \rangle

    And

    cf,g=Ecfgdm=cEfgdm=cf,g \langle c f , g \rangle = \int_{E} c f \overline{g} dm = c \int_{E} f \overline{g} dm = c \langle f , g \rangle

  • Part 2. Conjugate Symmetry

    f,g=Efgdm=Efgdm=Egfdm=f,g \langle f , g \rangle = \int_{E} f \overline{g} dm = \overline{ \int_{E} \overline{f} g dm} = \overline{ \int_{E} g \overline{f} dm} = \overline{ \langle f , g \rangle }

  • Part 3. Positive-definiteness

    f,f=Effdm=Ef2dm=f2 \langle f, f \rangle = \int_{E} f \overline{f} dm = \int_{E} | f |^2 dm = \sqrt{ | f |_{2} }

The proof concludes with Part 1 of Property 3..

See Also


  1. Capinski. (1999). Measure, Integral and Probability: p131. ↩︎