logo

Proof of the Dominated Convergence Theorem 📂Measure Theory

Proof of the Dominated Convergence Theorem

Theorem 1

Given measurable sets EME \in \mathcal{M} and gL1(E)g \in \mathcal{L}^{1} (E), let the sequence of measurable functions {fn}\left\{ f_{n} \right\} satisfy fng|f_{n}| \le g almost everywhere in EE. If, almost everywhere in EE, f=limnfn\displaystyle f = \lim_{n \to \infty} f_{n} then fL1(E)f \in \mathcal{L}^{1}(E). limnEfn(x)dm=Efdm \lim_{ n \to \infty} \int_{E} f_{n} (x) dm = \int_{E} f dm


Explanation

Compared to the Monotone Convergence Theorem, the condition fnff_{n} \nearrow f is missing, and there’s no need for fn0f_{n} \ge 0 either.

Interestingly though, a gg that can “dominate” {fn}\left\{ f_{n} \right\} is required, but eventually, gg does not appear in the result.

Proof

Part 1.

Let’s prove fL1(E)f \in \mathcal{L}^{1}(E) .

Since in EE we have fng|f_{n}| \le g, for all xEx \in E, g(x)fng(x)-g(x) \le f_{n} \le g(x) holds. Summarizing gives 0fn(x)+g(x)2g(x)0 \le f_{n} (x) + g(x) \le 2 g(x), and when nn \to \infty , 0f(x)+g(x)2g(x)0 \le f (x) + g(x) \le 2 g(x) thus (f+g)L1(E)(f+g) \in \mathcal{L}^{1}(E) Meanwhile, f=(f+g)+(g)f = (f + g ) + ( -g) and since L1(E)\mathcal{L}^{1}(E) is a vector space, fL1(E)f \in \mathcal{L}^{1}(E) holds.


Part 2.

Assume fn0f_{n} \ge 0.

Fatou’s Lemma: For a sequence of non-negative measurable functions {fn}\left\{ f_{n} \right\}, Efdmlim infnEfndm\displaystyle \int_{E} f dm \le \liminf_{n \to \infty} \int_{E} f_{n} dm

By assumption and Fatou’s Lemma, Efdmlim infnEfndm\displaystyle \int_{E} f dm \le \liminf_{n \to \infty} \int_{E} f_{n} dm and it suffices to show lim supnEfndmEfdm\displaystyle \limsup_{n \to \infty} \int_{E} f_{n} dm \le \int_{E} f dm .

Applying Fatou’s Lemma again to gfng-f_{n} gives Elimn(gfn)dmlim infnE(gfn)dm\displaystyle \int_{E} \lim_{n \to \infty} (g - f_{n}) dm \le \liminf_{n \to \infty} \int_{E} (g - f_{n} ) dm . Here, since f,g0f, g \ge 0, the left side is Elimn(gfn)dm=EgdmEfdm\displaystyle \int_{E} \lim_{n \to \infty} (g - f_{n}) dm =\int_{E} g dm - \int_{E} f dm and the right side is lim infnE(gfn)dm=lim infn(EgdmEfndm)=Egdmlim supnEfndm \begin{align*} & \liminf_{n \to \infty} \int_{E} (g - f_{n} ) dm \\ =& \liminf_{n \to \infty} \left( \int_{E} g dm - \int_{E} f_{n} dm \right) \\ =& \int_{E} g dm - \limsup_{n \to \infty} \int_{E} f_{n} dm \end{align*} . Summarizing, EgdmEfdmEgdmlim supnEfndm \int_{E} g dm - \int_{E} f dm \le \int_{E} g dm - \limsup_{n \to \infty} \int_{E} f_{n} dm Since gL1(E)g \in \mathcal{L}^{1} (E), Egdm<\displaystyle \int_{E} g dm < \infty holds, allowing for cancellation on both sides, and rearranging signs yields: lim supnEfndmEfdm\limsup_{n \to \infty} \int_{E} f_{n} dm \le \int_{E} f dm


Part 3.

To generalize for cases where fn0f_{n} \ge 0 is not true, define hn:=fn+gh_{n} := f_{n} + g. Since hn0h_{n} \ge 0, we can repeat the process in Part 2.


  1. Capinski. (1999). Measure, Integral and Probability: p92. ↩︎