logo

Lebesgue Integrable 📂Measure Theory

Lebesgue Integrable

Definition 1

Basic Properties

  • [1]: An integrable function is a measurable function.
  • [2]: If fL1(E)f \in \mathcal{L}^{1} (E) then EfdmEfdm\displaystyle \left| \int_{E} f dm \right| \le \int_{E} | f | dm
  • [3]: If fL1(E)f \in \mathcal{L}^{1} (E) and cRc \in \mathbb{R} then E(cf)dm=cEfdm\displaystyle \int_{E} (c f) dm = c \int_{E} f dm
  • [4]: If f,gL1(E)f,g \in \mathcal{L}^{1} (E) then E(f+g)dm=Efdm+Egdm\displaystyle \int_{E} ( f + g ) dm = \int_{E} f dm + \int_{E} g dm
  • [5]: If f,gL1(E)f,g \in \mathcal{L}^{1} (E) and fgf \le g then EfdmEgdm\displaystyle \int_{E} f dm \le \int_{E} g dm
  • [6]: For all EME \in \mathcal{M}, if Efdm=Egdm\displaystyle \int_{E} f dm = \int_{E} g dm then almost everywhere f=gf= g.

Explanation

It might seem easy that Property [1] is directly under the definition, but it can get confusing after a while so make sure to memorize it well.

Meanwhile, from properties [3]~[5], it can be seen that L1(E)\mathcal{L}^{1}(E) is a vector space.


  1. Capinski. (1999). Measure, Integral and Probability: p86. When we say EME \in \mathcal{M}, for a measurable function ff, let’s denote it as f+:=max{f,0}f:=max{f,0}f^{+} := \max \left\{ f , 0 \right\} \\ f^{-} := \max \left\{ -f , 0 \right\} Then, it can be represented as f=f+ff=f++f f = f^{+} - f^{-} \\ | f | = f^{+} + f^{-} If Efdm<\displaystyle \int_{E} | f | dm < \infty, that is, Ef+dm<Efdm< \int_{E} f^{+} dm < \infty \\ \int_{E} f^{-} dm < \infty then ff is called Lesbegue Integrable. The set of integrable functions from EE is denoted as follows. L1(E):={f  Efdm<} \mathcal{L}^{1}(E) : = \left\{ f \ \left| \ \int_{E} | f | dm < \infty \right. \right\}  ↩︎