logo

Monotone Convergence Theorem Proof 📂Measure Theory

Monotone Convergence Theorem Proof

Theorem 1

Let us assume that a sequence {fn}\left\{ f_{n} \right\} of measurable functions with non-negative values satisfies fnff_{n} \nearrow f. Then limnEfndm=Efdm \lim_{n \to \infty} \int_{E} f_{n} dm = \int_{E} f dm

Explanation

fnff_{n} \nearrow f means that for all xx, if fn(x)fn+1(x)f_{n}(x) \le f_{n+1} (x) while limnfn=f\displaystyle \lim_{n \to \infty} f_{n} = f. The formula is too simple, so knowing this theorem means precisely understanding the ‘condition’. In terms of usefulness, it implies that limits can freely cross integrals, which is unequivocally beneficial.

Proof

Since fnff_{n} \le f, lim supnEfndmEfdm \limsup_{n \to \infty} \int_{E} f_{n} dm \le \int_{E} f dm

Fatou’s Lemma: For a sequence {fn}\left\{ f_{n} \right\} of measurable functions with non-negative values E(lim infnfn)dmlim infnEfndm\displaystyle \int_{E} \left( \liminf_{n \to \infty} f_{n} \right) dm \le \liminf_{n \to \infty} \int_{E} f_{n} dm

By Fatou’s Lemma and the properties of limit infimum, Efdmlim infnEfndm\displaystyle \int_{E} f dm \le \liminf_{n \to \infty} \int_{E} f_{n} dm holds, and summarizing, lim supnEfndmEfdmlim infnEfndm\displaystyle \limsup_{n \to \infty} \int_{E} f_{n} dm \le \int_{E} f dm \le \liminf_{n \to \infty} \int_{E} f_{n} dm However, obviously lim infnEfndmlim supnEfndm\displaystyle \liminf_{n \to \infty} \int_{E} f_{n} dm \le \limsup_{n \to \infty} \int_{E} f_{n} dm, therefore lim supnEfndm=Efdm=lim infnEfndm\displaystyle \limsup_{n \to \infty} \int_{E} f_{n} dm = \int_{E} f dm = \liminf_{n \to \infty} \int_{E} f_{n} dm must hold.

Corollary

Let us assume that a sequence {fn}\left\{ f_{n} \right\} of measurable functions with non-negative values satisfies fnff_{n} \nearrow f almost everywhere. Then limnEfndm=Efdm\lim_{n \to \infty} \int_{E} f_{n} dm = \int_{E} f dm and, in particular n=1fndm=n=1fndm \int \sum_{n=1}^{\infty} f_{n} dm = \sum_{n=1}^{\infty} \int f_{n} dm


  1. Capinski. (1999). Measure, Integral and Probability: p84. ↩︎