logo

Finite Intersection Property 📂Topology

Finite Intersection Property

Definition 1

Let’s say topological space is XX and AP(X)\mathscr{A} \subset \mathscr{P} (X). It is said to have the Finite Intersection Property if for all finite subsets AAA \subset \mathscr{A}, A\displaystyle \bigcap A \ne \emptyset implies AA.

Explanation

That AA has the f.i.p. means the same as always meeting the following condition for open sets UαAU_{\alpha} \subset A: i=1n(XUi)    α(XUα) \bigcap_{i=1}^{n} \left( X \setminus U_{i} \right) \ne \emptyset \implies \bigcap_{\alpha \in \forall } \left( X \setminus U_{\alpha} \right) \ne \emptyset

Note that this property refers not to a topological space but to a set in general. For example, {[0,1n]  nN}\displaystyle \left\{ \left. \left[ 0 , {{1} \over {n}} \right] \ \right| \ n \in \mathbb{N} \right\} can be said to have the f.i.p. without specifying any topology.

The following theorem is useful because it gives a necessary and sufficient condition for compactness, but writing it out is verbose and the proof very difficult to understand. It’s natural to feel discouraged, but compactness is inherently tough, so let it be.

Theorem

For XX to be compact, the necessary and sufficient condition is that it has the f.i.p. for all closed AαXA_{\alpha} \subset X such that αAα\displaystyle \bigcap_{\alpha \in \forall} A_{\alpha} \ne \emptyset.

Proof

For open sets OαO_{\alpha} and closed sets CαC_{\alpha}, the following holds: X(Cα)=(XCα)=Oα X \setminus \left( \bigcap C_{\alpha} \right) = \bigcup \left( X \setminus C_{\alpha} \right) = \bigcup O_{\alpha}


(    )( \implies )

If C:={Cα  α}\mathscr{C} := \left\{ C_{\alpha} \ | \ \alpha \in \forall \right\} is a set of closed sets of XX having the f.i.p., then O:={Oα=XCα  α}\mathscr{O} := \left\{ O_{\alpha} = X \setminus C_{\alpha} \ | \ \alpha \in \forall \right\} becomes a set of open sets of XX.

Assuming that αCα=\displaystyle \bigcap_{\alpha \in \forall} C_{\alpha} = \emptyset, then α(XCα)=X(αCα)=X=X \bigcup_{\alpha \in \forall} \left( X \setminus C_{\alpha} \right) = X \setminus \left( \bigcap_{\alpha \in \forall} C_{\alpha} \right) = X \setminus \emptyset = X and, thus, XOX \subset \mathscr{O}, that is O\mathscr{O}, becomes an open cover of XX. Since XX is compact, there exists a finite open cover O={XCi  i=1,2,,n}\mathscr{O} ' = \left\{ X \setminus C_{i} \ | \ i = 1, 2 , \cdots , n \right\} that satisfies X=i=1n(XCi)\displaystyle X = \bigcup_{i=1}^{n} \left( X \setminus C_{i} \right). Meanwhile, X=i=1n(XCi)=Xi=1nCi X = \bigcup_{i = 1}^{n} \left( X \setminus C_{i} \right) = X \setminus \bigcap_{i=1}^{n} C_{i} therefore i=1nCi=\displaystyle \bigcap_{i=1}^{n} C_{i} = \emptyset. This contradicts the premise that C\mathscr{C} has f.i.p., so it must be that αCα\displaystyle \bigcap_{\alpha \in \forall} C_{\alpha} \ne \emptyset.


(    )( \impliedby )

If O:={Oα  α}\mathscr{O} := \left\{ O_{\alpha} \ | \ \alpha \in \forall \right\} is an open cover of XX, then C:={XOα  α}\mathscr{C} := \left\{ X \setminus O_{\alpha} \ | \ \alpha \in \forall \right\} becomes a set of closed sets of XX.

Meanwhile, αCα=α(XOα)=XαOα=XX= \bigcap_{\alpha \in \forall} C_{\alpha} = \bigcap_{\alpha \in \forall} \left( X \setminus O_{\alpha} \right) = X \setminus \bigcup_{\alpha \in \forall} O_{\alpha} = X \setminus X = \emptyset thus not having f.i.p., and there exists a C={Ci  i=1,2,,n}\mathscr{C} ' = \left\{ C_{i} \ | \ i = 1, 2 , \cdots , n \right\} satisfying i=1nCi=\displaystyle \bigcap_{i=1}^{n} C_{i} = \emptyset. And, Xi=1nOi=Xi=1n(XCi)=X(Xi=1nCi)=i=1nCi= X \setminus \bigcup_{i = 1}^{n} O_{i} = X \setminus \bigcup_{i=1}^{n} \left( X \setminus C_{i} \right) = X \setminus \left( X \setminus \bigcap_{i=1}^{n} C_{i} \right) = \bigcap_{i=1}^{n} C_{i} = \emptyset thus, Xi=1nOi\displaystyle X \subset \bigcup_{i=1}^{n} O_{i}. In other words, there exists a finite subcover {O1,O2,,On}\left\{ O_{1}, O_{2}, \cdots , O_{n} \right\} making XX compact.


  1. Munkres. (2000). Topology(2nd Edition): p169. ↩︎