logo

Indefinite Integral of the Form e^{x^2} 📂Lemmas

Indefinite Integral of the Form e^{x^2}

Theorem

ex2dx=n=0x2n+1(2n+1)n!+C \int e^{x^2}dx = \sum\limits_{n=0}^\infty \dfrac{x^{2n+1}}{(2n+1)n!}+C

Explanation

Just like the form ex2e^{-x^{2}}, it is difficult to integrate using general methods. There is a method to integrate by defining the error function, imaginary error function, erfi, but this article introduces solving it using Taylor series expansion.

Proof

By the method of Taylor series expansion,

ex=n=0xnn!=1+x+x22!++xnn!+ e^{x} = \sum\limits_{n=0}^{\infty} \dfrac{x^{n}}{n!} = 1 + x + \dfrac{x^{2}}{2!} + \cdots + \dfrac{x^{n}}{n!} + \cdots

Inserting x2x^2 instead of xx gives

ex2=n=0x2nn!=1+x2+x42!++x2nn!+ e^{x^2}=\sum\limits_{n=0}^\infty \dfrac{x^{2n}}{n!}=1+x^2+\dfrac{x^4}{2!}+\cdots +\dfrac{x^{2n}}{n!}+\cdots

Integrating both sides indefinitely gives

ex2dx= (1+x2+x42!++x2nn!+)dx= x+x331!+x552!+x773!++x2n+1(2n+1)n!++C \begin{align*} \int e^{x^2}dx =&\ \int (1+x^2+\dfrac{x^4}{2!}+\cdots +\dfrac{x^{2n}}{n!}+\cdots)dx \\ =&\ x + \dfrac{x^3}{3 \cdot 1!} + \dfrac{x^5}{5 \cdot 2!}+\dfrac{x^7}{7 \cdot 3!}+ \cdots +\dfrac{x^{2n+1}}{(2n+1)n!}+\cdots +C \end{align*}

Therefore

ex2dx=n=0x2n+1(2n+1)n!+C \int e^{x^2}dx=\sum \limits_{n=0}^\infty \dfrac{x^{2n+1}}{(2n+1)n!}+C