Proof that a Permutation Cannot Be Both Even and Odd
📂Abstract AlgebraProof that a Permutation Cannot Be Both Even and Odd
Definition
A permutation of a finite symmetric group can be expressed as a product of an even number of transpositions, making it even, or as a product of an odd number of transpositions, making it odd.
The sign of a permutation sgn(σ) is defined as follows:
sgn(σ)={+1−1if σ is evenif σ is odd
Explanation
The definition of even and odd appears quite natural, but from the definition alone, there is no exclusivity that states a permutation must be either even or odd. We shall verify this with the following theorem.
Theorem
There exist no permutations that are both even and odd.
Proof
Consider a transposition τ:=(i,j)\tau : = ( i , j )τ:=(i,j) and a permutation σ\sigmaσ of a finite symmetric group SnS_{n}Sn.
Every permutation in a finite symmetric group can be expressed as a product of disjoint cycles.
Case 1. iii and jjj are elements of different orbits of σ\sigmaσ
Since iii and jjj are not elements of the same orbit, for some r,m∈Zr, m \in \mathbb{Z}r,m∈Z, they can be represented as a product of two disjoint cycles σ=(i,i1,⋯ ,im)(j,j1,⋯ ,jr)\sigma = (i , i_{1} , \cdots , i_{m}) (j , j_{1} , \cdots , j_{r})σ=(i,i1,⋯,im)(j,j1,⋯,jr). Then, by the properties of transpositions,
τσ=(i,j)σ=(i,j)(i,i1,⋯ ,im)(j,j1,⋯ ,jr)=(i,i1,⋯ ,im,j)(j,j1,⋯ ,jr)=(j,i,i1,⋯ ,im)(j,j1,⋯ ,jr)=(j,j1,⋯ ,jr,i,i1,⋯ ,im)
\begin{align*}
\tau \sigma =& (i , j) \sigma
\\ =& (i , j) (i , i_{1} , \cdots , i_{m}) (j , j_{1} , \cdots , j_{r})
\\ =& (i , i_{1} , \cdots , i_{m} , j ) ( j , j_{1} , \cdots , j_{r})
\\ =& ( j , i , i_{1} , \cdots , i_{m} ) ( j , j_{1} , \cdots , j_{r})
\\ =& ( j , j_{1} , \cdots , j_{r} , i , i_{1} , \cdots , i_{m} )
\end{align*}
τσ=====(i,j)σ(i,j)(i,i1,⋯,im)(j,j1,⋯,jr)(i,i1,⋯,im,j)(j,j1,⋯,jr)(j,i,i1,⋯,im)(j,j1,⋯,jr)(j,j1,⋯,jr,i,i1,⋯,im)
Hence, τσ\tau \sigmaτσ indicates that iii and jjj belong to the same orbit, and the number of orbits of σ\sigmaσ and τσ\tau \sigmaτσ differ by 111.
Case 2. iii and jjj are elements of the same orbit of σ\sigmaσ
Since iii and jjj are elements of the same orbit, for some r,m∈Zr, m \in \mathbb{Z}r,m∈Z, they can be represented as σ=(i,i1,⋯ ,im,j,j1,⋯ ,jr)\sigma = ( i , i_{1} , \cdots , i_{m}, j , j_{1} , \cdots , j_{r} )σ=(i,i1,⋯,im,j,j1,⋯,jr). Then, by the properties of transpositions,
τσ=(i,j)σ=(i,j)(i,i1,⋯ ,im,j,j1,⋯ ,jr)=(i,j)(i,jr)(i,i1,⋯ ,im,j,j1,⋯ ,jr−1)=(i,j)(i,jr)(i,jr−1)(i,i1,⋯ ,im,j,j1,⋯ ,jr−2)=(i,j)(i,jr)⋯(i,j1)(i,j)(i,i1,⋯ ,im)=(i,j)(i,j,j1,⋯ ,jr)(i,i1,⋯ ,im)=(i,j)(j,j1,⋯ ,jr,i)(i,i1,⋯ ,im)=(i,j)(j,i)(j,j1,⋯ ,jr)(i,i1,⋯ ,im)=(j,j1,⋯ ,jr)(i,i1,⋯ ,im)
\begin{align*}
\tau \sigma =& (i , j) \sigma
\\ =& (i , j) (i , i_{1} , \cdots , i_{m} , j , j_{1} , \cdots , j_{r})
\\ =& (i , j) \left( i , j_{r} \right) (i , i_{1} , \cdots , i_{m} , j , j_{1} , \cdots , j_{r-1})
\\ =& (i , j) \left( i , j_{r} \right) \left( i , j_{r-1} \right) (i , i_{1} , \cdots , i_{m} , j , j_{1} , \cdots , j_{r-2})
\\ =& (i , j) \left( i , j_{r} \right) \cdots \left( i , j_{1} \right) \left( i , j \right) (i , i_{1} , \cdots , i_{m} )
\\ =& (i , j) (i , j , j_{1} , \cdots , j_{r}) (i , i_{1} , \cdots , i_{m} )
\\ =& (i , j) (j , j_{1} , \cdots , j_{r} , i) (i , i_{1} , \cdots , i_{m} )
\\ =& (i , j) (j , i) ( j , j_{1} , \cdots , j_{r} ) (i , i_{1} , \cdots , i_{m} )
\\ =& ( j , j_{1} , \cdots , j_{r} ) (i , i_{1} , \cdots , i_{m} )
\end{align*}
τσ=========(i,j)σ(i,j)(i,i1,⋯,im,j,j1,⋯,jr)(i,j)(i,jr)(i,i1,⋯,im,j,j1,⋯,jr−1)(i,j)(i,jr)(i,jr−1)(i,i1,⋯,im,j,j1,⋯,jr−2)(i,j)(i,jr)⋯(i,j1)(i,j)(i,i1,⋯,im)(i,j)(i,j,j1,⋯,jr)(i,i1,⋯,im)(i,j)(j,j1,⋯,jr,i)(i,i1,⋯,im)(i,j)(j,i)(j,j1,⋯,jr)(i,i1,⋯,im)(j,j1,⋯,jr)(i,i1,⋯,im)
Therefore, τσ\tau \sigmaτσ indicates that iii and jjj belong to different orbits, and the number of orbits of σ\sigmaσ and τσ\tau \sigmaτσ differ by 111.
Thus, we have confirmed that the difference in the number of orbits between σ\sigmaσ and τσ=(i,j)σ\tau \sigma = (i , j ) \sigmaτσ=(i,j)σ is 111, regardless of what iii and jjj are. This means that with each transposition applied to any permutation, the number of orbits increases by 111.
Meanwhile, the identity function, i.e., ι=[12⋯n12⋯n]\iota = \begin{bmatrix}
1 & 2 & \cdots & n
\\ 1 & 2 & \cdots & n
\end{bmatrix}ι=[1122⋯⋯nn] 의 궤도의 갯수는 nnn.
Auxiliary Theorem: In finite symmetric groups with more than one element, every permutation can be expressed as a product of transpositions.
Expressing an arbitrary permutation σ\sigmaσ as transpositions τk\tau_{k}τk yields σ=τ1τ2⋯τNι\sigma = \tau_{1} \tau_{2} \cdots \tau_{N} \iotaσ=τ1τ2⋯τNι, and the number of orbits is (N+n)(N + n)(N+n). A natural number (N+n)(N+n)(N+n) cannot be both even and odd simultaneously, hence the permutation σ\sigmaσ cannot be both even and odd.
■
Renewal
- September 4, 2023, Ryu Dae-sik, Modified and reinforced Case 2 development