Matrix Representation of Angular Momentum Operator
📂Quantum Mechanics Matrix Representation of Angular Momentum Operator The matrix representation of the angular momentum operator is as follows. When ℓ = 1 \ell = 1 ℓ = 1 , m = 1 , 0 , − 1 m = 1, 0, -1 m = 1 , 0 , − 1 holds,
L z = m = 1 m = 0 m = − 1 ℏ [ 1 0 0 0 0 0 0 0 − 1 ] m = 1 m = 0 m = − 1
\underset{\normalsize L_{z} = }{\scriptsize}
\begin{array}{cccc}
\scriptstyle{m=1} & \scriptstyle m=0 & \scriptstyle m=-1 & \\
\hbar\left[ \begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right. & \begin{array}{c} 0 \\ 0 \\ 0 \end{array} & \left. \begin{array}{c} 0 \\ 0 \\ -1 \end{array} \right] & \begin{array}{l} \scriptstyle m=1 \\ \scriptstyle m=0 \\ \scriptstyle m=-1 \end{array}
\end{array}
L z = m = 1 ℏ 1 0 0 m = 0 0 0 0 m = − 1 0 0 − 1 m = 1 m = 0 m = − 1
L x = m = 1 m = 0 m = − 1 ℏ 2 [ 0 1 0 1 0 1 0 1 0 ] m = 1 m = 0 m = − 1
\underset{\normalsize L_{x} = }{\scriptsize}
\begin{array}{cccc}
\scriptstyle{m=1} & \scriptstyle m=0 & \scriptstyle m=-1 & \\
\dfrac{\hbar}{\sqrt{2}}\left[ \begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right. & \begin{array}{c} 1 \\ 0 \\ 1 \end{array} & \left. \begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right] & \begin{array}{l} \scriptstyle m=1 \\ \scriptstyle m=0 \\ \scriptstyle m=-1 \end{array}
\end{array}
L x = m = 1 2 ℏ 0 1 0 m = 0 1 0 1 m = − 1 0 1 0 m = 1 m = 0 m = − 1
L y = m = 1 m = 0 m = − 1 ℏ 2 [ 0 − i 0 i 0 − i 0 i 0 ] m = 1 m = 0 m = − 1
\underset{\normalsize L_{y} = }{\scriptsize}
\begin{array}{cccc}
\scriptstyle{m=1} & \scriptstyle m=0 & \scriptstyle m=-1 & \\
\dfrac{\hbar}{\sqrt{2}}\left[ \begin{array}{c} 0 \\ -\i \\ 0 \end{array} \right. & \begin{array}{c} \i \\ 0 \\ -\i \end{array} & \left. \begin{array}{c} 0 \\ \i \\ 0 \end{array} \right] & \begin{array}{l} \scriptstyle m=1 \\ \scriptstyle m=0 \\ \scriptstyle m=-1 \end{array}
\end{array}
L y = m = 1 2 ℏ 0 − i 0 m = 0 i 0 − i m = − 1 0 i 0 m = 1 m = 0 m = − 1
The matrix representation of the ladder operator of angular momentum is as follows. When ℓ = 1 \ell = 1 ℓ = 1 , m = 1 , 0 , − 1 m = 1, 0, -1 m = 1 , 0 , − 1 holds,
L + = m = 1 m = 0 m = − 1 [ 0 0 0 2 0 0 0 2 0 ] m = 1 m = 0 m = − 1
\underset{\normalsize L_{+} = }{\scriptsize}
\begin{array}{cccc}
\scriptstyle{m=1} & \scriptstyle m=0 & \scriptstyle m=-1 & \\
\left[ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right. & \begin{array}{c} \sqrt{2} \\ 0 \\ 0 \end{array} & \left. \begin{array}{c} 0 \\ \sqrt{2} \\ 0 \end{array} \right] & \begin{array}{l} \scriptstyle m=1 \\ \scriptstyle m=0 \\ \scriptstyle m=-1 \end{array}
\end{array}
L + = m = 1 0 0 0 m = 0 2 0 0 m = − 1 0 2 0 m = 1 m = 0 m = − 1
L − = m = 1 m = 0 m = − 1 [ 0 2 0 0 0 2 0 0 0 ] m = 1 m = 0 m = − 1
\underset{\normalsize L_{-} = }{}
\begin{array}{cccc}
\scriptstyle{m=1} & \scriptstyle m=0 & \scriptstyle m=-1 & \\
\left[ \begin{array}{c} 0 \\ \sqrt{2} \\ 0 \end{array} \right. & \begin{array}{c} 0 \\ 0 \\ \sqrt{2} \end{array} & \left. \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right] & \begin{array}{l} \scriptstyle m=1 \\ \scriptstyle m=0 \\ \scriptstyle m=-1 \end{array}
\end{array}
L − = m = 1 0 2 0 m = 0 0 0 2 m = − 1 0 0 0 m = 1 m = 0 m = − 1
Proof Ladder Operator L + ∣ ℓ , m ⟩ = ( ℓ − m ) ( ℓ + m + 1 ) ℏ ∣ ℓ , m + 1 ⟩ L − ∣ ℓ , m ⟩ = ( ℓ + m ) ( ℓ − m + 1 ) ℏ ∣ ℓ , m − 1 ⟩
\begin{align*}
L_{+}\ket{\ell, m} &= \sqrt{(\ell-m)(\ell + m + 1)}\hbar\ket{\ell, m+1} \\
L_{-}\ket{\ell, m} &= \sqrt{(\ell+m)(\ell - m + 1)}\hbar\ket{\ell, m-1}
\end{align*}
L + ∣ ℓ , m ⟩ L − ∣ ℓ , m ⟩ = ( ℓ − m ) ( ℓ + m + 1 ) ℏ ∣ ℓ , m + 1 ⟩ = ( ℓ + m ) ( ℓ − m + 1 ) ℏ ∣ ℓ , m − 1 ⟩
Since the two ladder operators satisfy the above equation , for L + L_{+} L + we obtain the following equation.
⟨ ℓ , m ′ ∣ L + ∣ ℓ , m ⟩ = ( ℓ − m ) ( ℓ + m + 1 ) ℏ ⟨ ℓ , m ′ ∣ ℓ , m + 1 ⟩ = ( ℓ − m ) ( ℓ + m + 1 ) ℏ δ m ′ , m + 1
\begin{align*}
\braket{\ell,m^{\prime} | L_{+}|\ell,m} &= \sqrt{(\ell - m)(\ell + m + 1)}\hbar\braket{\ell,m^{\prime} | \ell,m+1} \\
&= \sqrt{(\ell - m)(\ell + m + 1)}\hbar \delta_{m^{\prime}, m+1}
\end{align*}
⟨ ℓ , m ′ ∣ L + ∣ ℓ , m ⟩ = ( ℓ − m ) ( ℓ + m + 1 ) ℏ ⟨ ℓ , m ′ ∣ ℓ , m + 1 ⟩ = ( ℓ − m ) ( ℓ + m + 1 ) ℏ δ m ′ , m + 1
At this time δ \delta δ is the Kronecker delta . In the same way, for L − L_{-} L − , we obtain the following equation.
⟨ ℓ , m ′ ∣ L − ∣ ℓ , m ⟩ = ( ℓ + m ) ( ℓ − m + 1 ) ℏ ⟨ ℓ , m ′ ∣ ℓ , m − 1 ⟩ = ( ℓ + m ) ( ℓ − m + 1 ) ℏ δ m ′ , m − 1
\begin{align*}
\braket{\ell,m^{\prime} | L_{-}|\ell,m} &= \sqrt{(\ell + m)(\ell - m + 1)}\hbar\braket{\ell,m^{\prime} | \ell,m-1} \\
&= \sqrt{(\ell + m)(\ell - m + 1)}\hbar \delta_{m^{\prime}, m-1}
\end{align*}
⟨ ℓ , m ′ ∣ L − ∣ ℓ , m ⟩ = ( ℓ + m ) ( ℓ − m + 1 ) ℏ ⟨ ℓ , m ′ ∣ ℓ , m − 1 ⟩ = ( ℓ + m ) ( ℓ − m + 1 ) ℏ δ m ′ , m − 1
When ℓ = 1 \ell = 1 ℓ = 1 , possible m m m is 1 , 0 , − 1 1, 0, -1 1 , 0 , − 1 , so let’s say that for convenience, the rows and columns of L ± L_{\pm} L ± are 1 , 0 , − 1 1, 0, -1 1 , 0 , − 1 . Then, the coordinate vector of the eigenfunction is as follows.
∣ 1 , 1 ⟩ = [ 1 0 0 ] , ∣ 1 , 0 ⟩ = [ 0 1 0 ] , ∣ 1 , − 1 ⟩ = [ 0 0 1 ]
\ket{1, 1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \qquad \ket{1, 0} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \qquad \ket{1, -1} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
∣ 1 , 1 ⟩ = 1 0 0 , ∣ 1 , 0 ⟩ = 0 1 0 , ∣ 1 , − 1 ⟩ = 0 0 1
Thus the state of the eigenfunction increases intuitively as follows with the expression L + ∣ ℓ , m ⟩ = ( ℓ − m ) ( ℓ + m + 1 ) ℏ ∣ ℓ , m + 1 ⟩ L_{+} \ket{\ell, m} = \sqrt{(\ell-m)(\ell + m + 1)}\hbar\ket{\ell, m+1} L + ∣ ℓ , m ⟩ = ( ℓ − m ) ( ℓ + m + 1 ) ℏ ∣ ℓ , m + 1 ⟩ . If ℓ = 1 \ell = 1 ℓ = 1 is assumed,
L + [ 0 0 1 ] = 2 ℏ [ 0 1 0 ] L + [ 0 1 0 ] = 2 ℏ [ 1 0 0 ]
L_{+} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \sqrt{2}\hbar \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \\[1em]
L_{+} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \sqrt{2}\hbar \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}
L + 0 0 1 = 2 ℏ 0 1 0 L + 0 1 0 = 2 ℏ 1 0 0
The matrix L + L_{+} L + is as follows.
L + = [ ⟨ 1 , 1 ∣ L + ∣ 1 , 1 ⟩ ⟨ 1 , 1 ∣ L + ∣ 1 , 0 ⟩ ⟨ 1 , 1 ∣ L + ∣ 1 , − 1 ⟩ ⟨ 1 , 0 ∣ L + ∣ 1 , 1 ⟩ ⟨ 1 , 0 ∣ L + ∣ 1 , 0 ⟩ ⟨ 1 , 0 ∣ L + ∣ 1 , − 1 ⟩ ⟨ 1 , − 1 ∣ L + ∣ 1 , 1 ⟩ ⟨ 1 , − 1 ∣ L + ∣ 1 , 0 ⟩ ⟨ 1 , − 1 ∣ L + ∣ 1 , − 1 ⟩ ] = [ 0 ℏ δ 1 , 2 2 ℏ δ 1 , 1 2 ℏ δ 1 , 0 0 ℏ δ 0 , 2 2 ℏ δ 0 , 1 2 ℏ δ 0 , 0 0 ℏ δ 1 , 2 2 ℏ δ − 1 , 1 2 ℏ δ − 1 , 0 ] = ℏ [ 0 2 0 0 0 2 0 0 0 ]
\begin{align*}
L_{+}
&= \begin{bmatrix}
\braket{1, 1 | L_{+}| 1, 1} & \braket{1, 1 | L_{+}| 1, 0} & \braket{1, 1 | L_{+}| 1,-1} \\
\braket{1, 0 | L_{+}| 1, 1} & \braket{1, 0 | L_{+}| 1, 0} & \braket{1, 0 | L_{+}| 1,-1} \\
\braket{1,-1 | L_{+}| 1, 1} & \braket{1,-1 | L_{+}| 1, 0} & \braket{1,-1 | L_{+}| 1,-1}
\end{bmatrix} \\
&= \begin{bmatrix}
0\hbar \delta_{1, 2} & \sqrt{2}\hbar \delta_{1 , 1} & \sqrt{2}\hbar \delta_{ 1, 0} \\
0\hbar \delta_{0, 2} & \sqrt{2}\hbar \delta_{0 , 1} & \sqrt{2}\hbar \delta_{ 0, 0} \\
0\hbar \delta_{1, 2} & \sqrt{2}\hbar \delta_{-1, 1} & \sqrt{2}\hbar \delta_{-1, 0}
\end{bmatrix} \\
&= \hbar \begin{bmatrix}
0 & \sqrt{2} & 0 \\
0 & 0 & \sqrt{2} \\
0 & 0 & 0
\end{bmatrix}
\end{align*}
L + = ⟨ 1 , 1∣ L + ∣1 , 1 ⟩ ⟨ 1 , 0∣ L + ∣1 , 1 ⟩ ⟨ 1 , − 1∣ L + ∣1 , 1 ⟩ ⟨ 1 , 1∣ L + ∣1 , 0 ⟩ ⟨ 1 , 0∣ L + ∣1 , 0 ⟩ ⟨ 1 , − 1∣ L + ∣1 , 0 ⟩ ⟨ 1 , 1∣ L + ∣1 , − 1 ⟩ ⟨ 1 , 0∣ L + ∣1 , − 1 ⟩ ⟨ 1 , − 1∣ L + ∣1 , − 1 ⟩ = 0ℏ δ 1 , 2 0ℏ δ 0 , 2 0ℏ δ 1 , 2 2 ℏ δ 1 , 1 2 ℏ δ 0 , 1 2 ℏ δ − 1 , 1 2 ℏ δ 1 , 0 2 ℏ δ 0 , 0 2 ℏ δ − 1 , 0 = ℏ 0 0 0 2 0 0 0 2 0
Similarly, for L − L_{-} L − , we have the following.
L − [ 1 0 0 ] = 2 ℏ [ 0 1 0 ] L − [ 0 1 0 ] = 2 ℏ [ 0 0 1 ]
L_{-} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \sqrt{2}\hbar \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \\[1em]
L_{-} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \sqrt{2}\hbar \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
L − 1 0 0 = 2 ℏ 0 1 0 L − 0 1 0 = 2 ℏ 0 0 1
L − = ℏ [ 0 0 0 2 0 0 0 2 0 ]
L_{-} = \hbar \begin{bmatrix} 0 & 0 & 0 \\ \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{bmatrix}
L − = ℏ 0 2 0 0 0 2 0 0 0
■
Angular Momentum Operator The simultaneous eigenfunction of L z L_{z} L z and L 2 L^2 L 2 is ∣ ℓ , m ⟩ \ket{\ell, m} ∣ ℓ , m ⟩ , and the eigenvalue equation is
L z ∣ ℓ , m ⟩ = m ℏ ∣ ℓ , m ⟩ L 2 ∣ ℓ , m ⟩ = ℓ ( ℓ + 1 ) ℏ 2 ∣ ℓ , m ⟩
\begin{align*}
L_{z}\ket{\ell, m} &= m\hbar \ket{\ell, m} \\
L^2\ket{\ell, m} &= \ell(\ell+1)\hbar^2 \ket{\ell, m}
\end{align*}
L z ∣ ℓ , m ⟩ L 2 ∣ ℓ , m ⟩ = m ℏ ∣ ℓ , m ⟩ = ℓ ( ℓ + 1 ) ℏ 2 ∣ ℓ , m ⟩
Thus,
⟨ ℓ , m ′ ∣ L z ∣ ℓ , m ⟩ = m ℏ ⟨ ℓ , m ′ ∣ ℓ , m ⟩ = m ℏ δ m m ′
\braket{\ell,m^{\prime} | L_{z}|\ell,m}=m\hbar \braket{\ell,m^{\prime} | \ell,m}=m\hbar \delta_{mm^{\prime}}
⟨ ℓ , m ′ ∣ L z ∣ ℓ , m ⟩ = m ℏ ⟨ ℓ , m ′ ∣ ℓ , m ⟩ = m ℏ δ m m ′
Therefore, it is [ ( L z ) m n ] = m ℏ δ m n [(L_{z})_{mn}] = m \hbar \delta_{mn} [( L z ) mn ] = m ℏ δ mn . At this time δ \delta δ is the Kronecker delta . When ℓ = 1 \ell = 1 ℓ = 1 , possible m m m is 1 , 0 , − 1 1, 0, -1 1 , 0 , − 1 , so let’s say L z L_{z} L z has rows 1 1 1 , 0 0 0 , and − 1 -1 − 1 for convenience. Let’s assume that the coordinate vector of each eigenfunction is as follows.
∣ 1 , 1 ⟩ = [ 1 0 0 ] , ∣ 1 , 0 ⟩ = [ 0 1 0 ] , ∣ 1 , − 1 ⟩ = [ 0 0 1 ]
\ket{1, 1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \qquad \ket{1, 0} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \qquad \ket{1, -1} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}
∣ 1 , 1 ⟩ = 1 0 0 , ∣ 1 , 0 ⟩ = 0 1 0 , ∣ 1 , − 1 ⟩ = 0 0 1
Then, since it is [ ( L z ) m n ] = m ℏ δ m n [(L_{z})_{mn}] = m \hbar \delta_{mn} [( L z ) mn ] = m ℏ δ mn ,
L z = [ ( L z ) 11 ( L z ) 10 ( L z ) 1 − 1 ( L z ) 01 ( L z ) 00 ( L z ) 0 − 1 ( L z ) − 11 ( L z ) − 10 ( L z ) − 1 − 1 ] = [ 1 ℏ δ 1 , 1 1 ℏ δ 1 , 0 1 ℏ δ 1 , − 1 0 ℏ δ 0 , 1 0 ℏ δ 0 , 0 0 ℏ δ 0 , − 1 − 1 ℏ δ − 1 , 1 − 1 ℏ δ − 1 , 0 − 1 ℏ δ − 1 , − 1 ] = ℏ [ 1 0 0 0 0 0 0 0 − 1 ]
\begin{align*}
L_{z} &= \begin{bmatrix}
(L_{z})_{11} & (L_{z})_{10} & (L_{z})_{1-1} \\
(L_{z})_{01} & (L_{z})_{00} & (L_{z})_{0-1} \\
(L_{z})_{-11} & (L_{z})_{-10} & (L_{z})_{-1-1}
\end{bmatrix} \\
&= \begin{bmatrix}
1\hbar\delta_{1,1} & 1\hbar\delta_{1,0} & 1\hbar\delta_{1,-1} \\
0\hbar\delta_{0,1} & 0\hbar\delta_{0,0} & 0\hbar\delta_{0,-1} \\
-1\hbar\delta_{-1,1} & -1\hbar\delta_{-1,0} & -1\hbar\delta_{-1,-1}
\end{bmatrix} \\
&= \hbar \begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{bmatrix}
\end{align*}
L z = ( L z ) 11 ( L z ) 01 ( L z ) − 11 ( L z ) 10 ( L z ) 00 ( L z ) − 10 ( L z ) 1 − 1 ( L z ) 0 − 1 ( L z ) − 1 − 1 = 1ℏ δ 1 , 1 0ℏ δ 0 , 1 − 1ℏ δ − 1 , 1 1ℏ δ 1 , 0 0ℏ δ 0 , 0 − 1ℏ δ − 1 , 0 1ℏ δ 1 , − 1 0ℏ δ 0 , − 1 − 1ℏ δ − 1 , − 1 = ℏ 1 0 0 0 0 0 0 0 − 1
Also, since L x = 1 2 ( L + + L − ) L_{x} = \dfrac{1}{2} (L_{+} + L_{-}) L x = 2 1 ( L + + L − ) and L y = − i 2 ( L + − L − ) L_{y} = -\dfrac{\i}{2}(L_{+} - L_{-}) L y = − 2 i ( L + − L − ) , L x L_{x} L x and L y L_{y} L y are as follows.
L x = 1 2 ( L + + L − ) = 1 2 ( ℏ [ 0 2 0 0 0 2 0 0 0 ] + ℏ [ 0 0 0 2 0 0 0 2 0 ] ) = ℏ 2 [ 0 1 0 1 0 1 0 1 0 ]
\begin{align*}
L_{x} &= \dfrac{1}{2} (L_{+} + L_{-}) \\
&= \dfrac{1}{2}\left( \hbar\begin{bmatrix}
0 & \sqrt{2} & 0 \\
0 & 0 & \sqrt{2} \\
0 & 0 & 0
\end{bmatrix} + \hbar\begin{bmatrix} 0 & 0 & 0 \\ \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{bmatrix} \right) \\
&= \dfrac{\hbar}{\sqrt{2}} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \\
\end{align*}
L x = 2 1 ( L + + L − ) = 2 1 ℏ 0 0 0 2 0 0 0 2 0 + ℏ 0 2 0 0 0 2 0 0 0 = 2 ℏ 0 1 0 1 0 1 0 1 0
L y = − i 2 ( L + − L − ) = − i 2 ( ℏ [ 0 2 0 0 0 2 0 0 0 ] − ℏ [ 0 0 0 2 0 0 0 2 0 ] ) = ℏ 2 [ 0 − i 0 i 0 − i 0 i 0 ]
\begin{align*}
L_{y} &= -\dfrac{\i}{2} (L_{+} - L_{-}) \\
&= -\dfrac{\i}{2}\left( \hbar\begin{bmatrix}
0 & \sqrt{2} & 0 \\
0 & 0 & \sqrt{2} \\
0 & 0 & 0
\end{bmatrix} - \hbar\begin{bmatrix} 0 & 0 & 0 \\ \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{bmatrix} \right) \\
&= \dfrac{\hbar}{\sqrt{2}} \begin{bmatrix} 0 & -\i & 0 \\ \i & 0 & -\i \\ 0 & \i & 0 \end{bmatrix} \\
\end{align*}
L y = − 2 i ( L + − L − ) = − 2 i ℏ 0 0 0 2 0 0 0 2 0 − ℏ 0 2 0 0 0 2 0 0 0 = 2 ℏ 0 i 0 − i 0 i 0 − i 0