logo

Matrix Representation of Angular Momentum Operator 📂Quantum Mechanics

Matrix Representation of Angular Momentum Operator

Formula

The matrix representation of the angular momentum operator is as follows. When =1\ell = 1, m=1,0,1m = 1, 0, -1 holds,

Lz=m=1m=0m=1[100000001]m=1m=0m=1 \underset{\normalsize L_{z} = }{\scriptsize} \begin{array}{cccc} \scriptstyle{m=1} & \scriptstyle m=0 & \scriptstyle m=-1 & \\ \hbar\left[ \begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right. & \begin{array}{c} 0 \\ 0 \\ 0 \end{array} & \left. \begin{array}{c} 0 \\ 0 \\ -1 \end{array} \right] & \begin{array}{l} \scriptstyle m=1 \\ \scriptstyle m=0 \\ \scriptstyle m=-1 \end{array} \end{array}

Lx=m=1m=0m=12[010101010]m=1m=0m=1 \underset{\normalsize L_{x} = }{\scriptsize} \begin{array}{cccc} \scriptstyle{m=1} & \scriptstyle m=0 & \scriptstyle m=-1 & \\ \dfrac{\hbar}{\sqrt{2}}\left[ \begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right. & \begin{array}{c} 1 \\ 0 \\ 1 \end{array} & \left. \begin{array}{c} 0 \\ 1 \\ 0 \end{array} \right] & \begin{array}{l} \scriptstyle m=1 \\ \scriptstyle m=0 \\ \scriptstyle m=-1 \end{array} \end{array}

Ly=m=1m=0m=12[0i0i0i0i0]m=1m=0m=1 \underset{\normalsize L_{y} = }{\scriptsize} \begin{array}{cccc} \scriptstyle{m=1} & \scriptstyle m=0 & \scriptstyle m=-1 & \\ \dfrac{\hbar}{\sqrt{2}}\left[ \begin{array}{c} 0 \\ -\i \\ 0 \end{array} \right. & \begin{array}{c} \i \\ 0 \\ -\i \end{array} & \left. \begin{array}{c} 0 \\ \i \\ 0 \end{array} \right] & \begin{array}{l} \scriptstyle m=1 \\ \scriptstyle m=0 \\ \scriptstyle m=-1 \end{array} \end{array}

The matrix representation of the ladder operator of angular momentum is as follows. When =1\ell = 1, m=1,0,1m = 1, 0, -1 holds,

L+=m=1m=0m=1[000200020]m=1m=0m=1 \underset{\normalsize L_{+} = }{\scriptsize} \begin{array}{cccc} \scriptstyle{m=1} & \scriptstyle m=0 & \scriptstyle m=-1 & \\ \left[ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right. & \begin{array}{c} \sqrt{2} \\ 0 \\ 0 \end{array} & \left. \begin{array}{c} 0 \\ \sqrt{2} \\ 0 \end{array} \right] & \begin{array}{l} \scriptstyle m=1 \\ \scriptstyle m=0 \\ \scriptstyle m=-1 \end{array} \end{array}

L=m=1m=0m=1[020002000]m=1m=0m=1 \underset{\normalsize L_{-} = }{} \begin{array}{cccc} \scriptstyle{m=1} & \scriptstyle m=0 & \scriptstyle m=-1 & \\ \left[ \begin{array}{c} 0 \\ \sqrt{2} \\ 0 \end{array} \right. & \begin{array}{c} 0 \\ 0 \\ \sqrt{2} \end{array} & \left. \begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right] & \begin{array}{l} \scriptstyle m=1 \\ \scriptstyle m=0 \\ \scriptstyle m=-1 \end{array} \end{array}

Proof

Ladder Operator

L+,m=(m)(+m+1),m+1L,m=(+m)(m+1),m1 \begin{align*} L_{+}\ket{\ell, m} &= \sqrt{(\ell-m)(\ell + m + 1)}\hbar\ket{\ell, m+1} \\ L_{-}\ket{\ell, m} &= \sqrt{(\ell+m)(\ell - m + 1)}\hbar\ket{\ell, m-1} \end{align*}

Since the two ladder operators satisfy the above equation, for L+L_{+} we obtain the following equation.

,mL+,m=(m)(+m+1),m,m+1=(m)(+m+1)δm,m+1 \begin{align*} \braket{\ell,m^{\prime} | L_{+}|\ell,m} &= \sqrt{(\ell - m)(\ell + m + 1)}\hbar\braket{\ell,m^{\prime} | \ell,m+1} \\ &= \sqrt{(\ell - m)(\ell + m + 1)}\hbar \delta_{m^{\prime}, m+1} \end{align*}

At this time δ\delta is the Kronecker delta. In the same way, for LL_{-}, we obtain the following equation.

,mL,m=(+m)(m+1),m,m1=(+m)(m+1)δm,m1 \begin{align*} \braket{\ell,m^{\prime} | L_{-}|\ell,m} &= \sqrt{(\ell + m)(\ell - m + 1)}\hbar\braket{\ell,m^{\prime} | \ell,m-1} \\ &= \sqrt{(\ell + m)(\ell - m + 1)}\hbar \delta_{m^{\prime}, m-1} \end{align*}

When =1\ell = 1, possible mm is 1,0,11, 0, -1, so let’s say that for convenience, the rows and columns of L±L_{\pm} are 1,0,11, 0, -1. Then, the coordinate vector of the eigenfunction is as follows.

1,1=[100],1,0=[010],1,1=[001] \ket{1, 1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \qquad \ket{1, 0} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \qquad \ket{1, -1} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}

Thus the state of the eigenfunction increases intuitively as follows with the expression L+,m=(m)(+m+1),m+1L_{+} \ket{\ell, m} = \sqrt{(\ell-m)(\ell + m + 1)}\hbar\ket{\ell, m+1}. If =1\ell = 1 is assumed,

L+[001]=2[010]L+[010]=2[100] L_{+} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \sqrt{2}\hbar \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \\[1em] L_{+} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \sqrt{2}\hbar \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}

The matrix L+L_{+} is as follows.

L+=[1,1L+1,11,1L+1,01,1L+1,11,0L+1,11,0L+1,01,0L+1,11,1L+1,11,1L+1,01,1L+1,1]=[0δ1,22δ1,12δ1,00δ0,22δ0,12δ0,00δ1,22δ1,12δ1,0]=[020002000] \begin{align*} L_{+} &= \begin{bmatrix} \braket{1, 1 | L_{+}| 1, 1} & \braket{1, 1 | L_{+}| 1, 0} & \braket{1, 1 | L_{+}| 1,-1} \\ \braket{1, 0 | L_{+}| 1, 1} & \braket{1, 0 | L_{+}| 1, 0} & \braket{1, 0 | L_{+}| 1,-1} \\ \braket{1,-1 | L_{+}| 1, 1} & \braket{1,-1 | L_{+}| 1, 0} & \braket{1,-1 | L_{+}| 1,-1} \end{bmatrix} \\ &= \begin{bmatrix} 0\hbar \delta_{1, 2} & \sqrt{2}\hbar \delta_{1 , 1} & \sqrt{2}\hbar \delta_{ 1, 0} \\ 0\hbar \delta_{0, 2} & \sqrt{2}\hbar \delta_{0 , 1} & \sqrt{2}\hbar \delta_{ 0, 0} \\ 0\hbar \delta_{1, 2} & \sqrt{2}\hbar \delta_{-1, 1} & \sqrt{2}\hbar \delta_{-1, 0} \end{bmatrix} \\ &= \hbar \begin{bmatrix} 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 \end{bmatrix} \end{align*}

Similarly, for LL_{-}, we have the following.

L[100]=2[010]L[010]=2[001] L_{-} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \sqrt{2}\hbar \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \\[1em] L_{-} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \sqrt{2}\hbar \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}

L=[000200020] L_{-} = \hbar \begin{bmatrix} 0 & 0 & 0 \\ \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{bmatrix}

Angular Momentum Operator

The simultaneous eigenfunction of LzL_{z} and L2L^2 is ,m\ket{\ell, m}, and the eigenvalue equation is

Lz,m=m,mL2,m=(+1)2,m \begin{align*} L_{z}\ket{\ell, m} &= m\hbar \ket{\ell, m} \\ L^2\ket{\ell, m} &= \ell(\ell+1)\hbar^2 \ket{\ell, m} \end{align*}

Thus,

,mLz,m=m,m,m=mδmm \braket{\ell,m^{\prime} | L_{z}|\ell,m}=m\hbar \braket{\ell,m^{\prime} | \ell,m}=m\hbar \delta_{mm^{\prime}}

Therefore, it is [(Lz)mn]=mδmn[(L_{z})_{mn}] = m \hbar \delta_{mn}. At this time δ\delta is the Kronecker delta. When =1\ell = 1, possible mm is 1,0,11, 0, -1, so let’s say LzL_{z} has rows 11, 00, and 1-1 for convenience. Let’s assume that the coordinate vector of each eigenfunction is as follows.

1,1=[100],1,0=[010],1,1=[001] \ket{1, 1} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \qquad \ket{1, 0} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \qquad \ket{1, -1} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}

Then, since it is [(Lz)mn]=mδmn[(L_{z})_{mn}] = m \hbar \delta_{mn},

Lz=[(Lz)11(Lz)10(Lz)11(Lz)01(Lz)00(Lz)01(Lz)11(Lz)10(Lz)11]=[1δ1,11δ1,01δ1,10δ0,10δ0,00δ0,11δ1,11δ1,01δ1,1]=[100000001] \begin{align*} L_{z} &= \begin{bmatrix} (L_{z})_{11} & (L_{z})_{10} & (L_{z})_{1-1} \\ (L_{z})_{01} & (L_{z})_{00} & (L_{z})_{0-1} \\ (L_{z})_{-11} & (L_{z})_{-10} & (L_{z})_{-1-1} \end{bmatrix} \\ &= \begin{bmatrix} 1\hbar\delta_{1,1} & 1\hbar\delta_{1,0} & 1\hbar\delta_{1,-1} \\ 0\hbar\delta_{0,1} & 0\hbar\delta_{0,0} & 0\hbar\delta_{0,-1} \\ -1\hbar\delta_{-1,1} & -1\hbar\delta_{-1,0} & -1\hbar\delta_{-1,-1} \end{bmatrix} \\ &= \hbar \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix} \end{align*}

Also, since Lx=12(L++L)L_{x} = \dfrac{1}{2} (L_{+} + L_{-}) and Ly=i2(L+L)L_{y} = -\dfrac{\i}{2}(L_{+} - L_{-}), LxL_{x} and LyL_{y} are as follows.

Lx=12(L++L)=12([020002000]+[000200020])=2[010101010] \begin{align*} L_{x} &= \dfrac{1}{2} (L_{+} + L_{-}) \\ &= \dfrac{1}{2}\left( \hbar\begin{bmatrix} 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 \end{bmatrix} + \hbar\begin{bmatrix} 0 & 0 & 0 \\ \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{bmatrix} \right) \\ &= \dfrac{\hbar}{\sqrt{2}} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \\ \end{align*}

Ly=i2(L+L)=i2([020002000][000200020])=2[0i0i0i0i0] \begin{align*} L_{y} &= -\dfrac{\i}{2} (L_{+} - L_{-}) \\ &= -\dfrac{\i}{2}\left( \hbar\begin{bmatrix} 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 \end{bmatrix} - \hbar\begin{bmatrix} 0 & 0 & 0 \\ \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{bmatrix} \right) \\ &= \dfrac{\hbar}{\sqrt{2}} \begin{bmatrix} 0 & -\i & 0 \\ \i & 0 & -\i \\ 0 & \i & 0 \end{bmatrix} \\ \end{align*}