logo

Joukowsky Transformation 📂Complex Anaylsis

Joukowsky Transformation

Definition 1

Joukowsky\_transform.svg.png

Let’s assume w=f(z)=az+bz\displaystyle w = f(z) = a z + {{b} \over {z}}. If a=ba=b, then ff is called the Joukowski Transform, which maps a circle not centered at 00 to an airfoil shape.

  • [1]: ff maps a circle centered at 00 to an ellipse.
  • [2]: ff maps a semi-infinite line starting from 00 to a hyperbola.

Explanation

Zhukovsky is a Soviet physicist who made contributions in the fields of aerodynamics, among others. The fact that airplane wing sections can be mapped to circles means that problems in aerodynamics can be solved using complex analysis.

Proof

[1]

Given z=reiθ,w=u+ivz= r e^{i \theta}, w = u + iv, u=arcosθ+brcosθ=(ar+br)cosθv=arsinθbrsinθ=(arbr)sinθ u = ar \cos \theta + {{b} \over {r}} \cos \theta = \left( ar + {{b} \over {r}} \right) \cos \theta \\ v = ar \sin \theta - {{b} \over {r}} \sin \theta = \left( ar - {{b} \over {r}} \right) \sin \theta

Setting p:=ar+br,q:=arbr\displaystyle p := ar + {{b} \over {r}}, q := ar - {{b} \over {r}}, up=cosθvq=sinθ {{u} \over {p}} = \cos \theta \\ \displaystyle {{v} \over {q}} = \sin \theta Then, u2p2+v2q2=1 {{u^2} \over {p^2}} + {{v^2} \over {q^2}} = 1 If rr is taken as a constant, ff maps the circle z=r|z| = r into an ellipse.

[2]

Given z=reiθ,w=u+ivz= r e^{i \theta}, w = u + iv, u=arcosθ+brcosθ=(ar+br)cosθv=arsinθbrsinθ=(arbr)sinθ u = ar \cos \theta + {{b} \over {r}} \cos \theta = \left( ar + {{b} \over {r}} \right) \cos \theta \\ \displaystyle v = ar \sin \theta - {{b} \over {r}} \sin \theta = \left( ar - {{b} \over {r}} \right) \sin \theta Meanwhile, ucosθ=ar+brvsinθ=arbr {{u} \over { \cos \theta }} = ar + {{b} \over {r}} \\ \displaystyle {{v} \over { \sin \theta }} = ar - {{b} \over {r}} Therefore, u2cos2θv2sin2θ=4ab {{u^2} \over { \cos^2 \theta }} - {{v^2} \over {\sin^2 \theta }} = 4ab If θ\theta is taken as a constant, ff maps the semi-infinite line making an angle of size θ\theta with the xx axis into a hyperbola.


  1. Osborne (1999). Complex variables and their applications: p215~216. ↩︎