logo

Conformal Mapping by Trigonometric Functions 📂Complex Anaylsis

Conformal Mapping by Trigonometric Functions

Theorem 1

Conformal mapping $w = f(z) = \sin z$ maps vertical lines $y=k$ to ellipses and horizontal lines $x = k$ to hyperbolas.

Proof

Suppose $$ z = x + iy \\ w = u + i v $$, then $$ u = \sin x \cosh y \\ v = \cos x \sinh y $$. Let $y = k$, then $$ {{ u^2 } \over { \cosh^{2} k}} = \sin^{2} x \\ \displaystyle {{ v^2 } \over { \sinh^{2} k}} = \cos^{2} x $$. Adding both sides, $$ {{ u^2 } \over { \cosh^{2} k}} + {{ v^2 } \over { \sinh^{2} k}} = 1 $$, which becomes the equation of an ellipse. Let $x = k$, then $$ {{ u^2 } \over { \sin^{2} k}} = \cosh^{2} y \\ \displaystyle {{ v^2 } \over { \cos^{2} k}} = \sinh^{2} y $$. Subtracting both sides, $$ {{ u^2 } \over { \sin^{2} k}} - {{ v^2 } \over { \cos^{2} k}} = 1 $$, which becomes the equation of a hyperbola.


  1. Osborne (1999). Complex variables and their applications: p220. ↩︎