logo

Properties of Mean and Variance 📂Mathematical Statistics

Properties of Mean and Variance

Theorem

The mean E(X)=μXE ( X ) = \mu_{X} and variance Var(X)=E[(XμX)2]\Var (X) = E [ ( X - \mu_{X} )^2 ] have the following properties:

  • [1]: E(X+Y)=E(X)+E(Y)E(X + Y) = E(X) + E(Y)
  • [2]: E(aX+b)=aE(X)+bE(aX + b) = a E(X) + b
  • [3]: Var(X)0\Var (X) \ge 0
  • [4]: Var(X)=E(X2)μX2\Var ( X ) = E(X^2) - \mu_{X}^2
  • [5]: Var(aX+b)=a2Var(X)\Var (aX + b) = a^2 \Var (X)

Explanation

As they relate to mean and variance, these are very important properties. Specifically, [1] and [2] are properties known as Linearity, which make handling equations very convenient.

Proof

[1]

For discrete cases E(X+Y)=(xp(x)+yp(y))=xp(x)+yp(y)=E(X)+E(Y) \begin{align*} E ( X + Y ) =& \sum (xp(x) + yp(y) ) \\ =& \sum xp(x) + \sum yp(y) \\ =& E(X) + E(Y) \end{align*} For continuous cases E(X+Y)=(x+y)f(x,y)dxdy=xf(x,y)dxdy+yf(x,y)dxdy=E(X)+E(Y) \begin{align*} E ( X + Y ) =& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x + y) f(x,y) dx dy \\ =& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x f(x,y) dx dy + \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y f(x,y) dx dy \\ =& E(X) + E(Y) \end{align*}

[2]

For discrete cases E(aX+b)=(axp(x)+bp(x))=axp(x)+bp(y)=aE(X)+b \begin{align*} E ( aX + b ) =& \sum \left( a x p(x) + b p(x) \right) \\ =& a \sum x p(x) + b \sum p(y) \\ =& a E(X) + b \end{align*} For continuous cases E(aX+b)=(ax+b)f(x)dx=axf(x)dx+bf(x)dx=axf(x)dx+bf(x)dx=aE(X)+b \begin{align*} E ( aX + b ) =& \int_{-\infty}^{\infty} (ax+b) f(x) dx \\ =& \int_{-\infty}^{\infty} a xf(x) dx + \int_{-\infty}^{\infty} b f(x) dx \\ =& a \int_{-\infty}^{\infty} xf(x) dx + b \int_{-\infty}^{\infty} f(x) dx \\ =& a E(X) + b \end{align*}

[3]

Since (XμX)20( X - \mu_{X} )^2 \ge 0, then Var(X)=E[(XμX)2]0\Var (X) = E [ ( X - \mu_{X} )^2 ] \ge 0

[4]

Var(X)=E[(XμX)2]=E(X22μXX+μX2)=E(X2)2μXE(X)+μX2=E(X2)μX2 \begin{align*} \Var (X) =& E [ ( X - \mu_{X} )^2 ] \\ =& E (X^2 - 2 \mu_{X} X + \mu_{X}^2 ) \\ =& E (X^2) - 2 \mu_{X} E(X) + \mu_{X}^2 \\ =& E(X^2) - \mu_{X}^2 \end{align*}

[5]

According to theorem [2], if Y=aX+bY = a X + b then μY=aμX+b\mu_{Y} = a \mu_{X} + b and Var(Y)=E[(YμY)2]=E[(aX+baμXb)2]=E[a2(XμX)2]=a2Var(X) \begin{align*} \Var (Y) =& E [ ( Y - \mu_{Y} )^2 ] \\ =& E [ ( aX + b - a \mu_{X} - b )^2 ] \\ =& E [ a^2 ( X - \mu_{X} )^2 ] \\ =& a^2 \Var (X) \end{align*}