logo

Summation of Inverse Squares Using Complex Analysis 📂Complex Anaylsis

Summation of Inverse Squares Using Complex Analysis

Theorem 1

n=11n2=π26 \sum_{n =1 }^{\infty} {{1} \over {n^2}} = {{ \pi ^2 } \over { 6 }}

Euler’s approach is neat and elegant, but it’s so ingenious that there aren’t many practical applications. The joy of studying complex analysis is that such shortcuts to results are readily available. It’s a good example, so try solving it yourself.

Proof

If we define f(z):=1z2\displaystyle f(z) : = {{1} \over {z^2}} then limzzf(z)=0\displaystyle \lim_{z \to \infty} z f(z) = 0.

Formula for the sum of series over all integers: For the rational function ff, let’s say limnzf(z)=0,nZ\lim_{n \to \infty} z f(z) = 0, n \in \mathbb{Z} where f(n)0f(n) \ne 0. When ff has a finite singularity z1,,zmz_{1}, \cdots , z_{m}, n=f(n)=n=1mReszn(πf(z)cotπz) \sum_{n=-\infty}^{\infty} f(n) = - \sum_{n = 1}^{m} \text{Res}_{z_{n}} (\pi f(z) \cot \pi z)

It can’t be directly applied completely, and exception handling for n0n \ne 0 is necessary.

If we define F(z):=πf(z)cotπzF(z): = \pi f(z) \cot \pi z, then for n0n \ne 0 it is ResnF(z)=f(n)\text{Res}_{n} F(z) = f(n).

Laurent expansion of the cotangent: cotz=1zz3z3452z5945cscz=1z+z6+7z3360+31z515120+ \cot z = {{1} \over {z}} - {{z} \over {3}} - {{z^{3}} \over {45}} - {{2 z^{5}} \over {945}} - \cdots \\ \csc z = {{1} \over {z}} + {{z} \over {6}} + {{7 z^{3}} \over {360}} + {{31 z^{5}} \over {15120}} + \cdots

Meanwhile, in the vicinity of n=0n=0, F(z)=πz2(1πzπz3π3z345) F(z) = {{\pi} \over {z^2}} \left( {{1} \over { \pi z}} - {{ \pi z} \over {3}} - {{ \pi^{3} z^{3}} \over {45}} - \cdots \right) thus Res0F(z)=π23 \text{Res}_{0} F(z) = - {{\pi^2} \over {3}} FF doesn’t have singularities other than nZn \in \mathbb{Z}, so n=f(n)=n=1f(n)π23+n=1f(n)=0 \sum_{n=-\infty}^{\infty} f(n) = \sum_{n=-\infty}^{-1} f(n) - {{\pi^2} \over {3}} + \sum_{n=1}^{\infty} f(n) = 0 Since ff is an even function, n=1f(n)=n=1f(n)\displaystyle \sum_{n=-\infty}^{-1} f(n) = \sum_{n=1}^{\infty} f(n) and if we organize it, we get n=11n2=π26 \sum_{n =1 }^{\infty} {{1} \over {n^2}} = {{ \pi ^2 } \over { 6 }}

See Also


  1. Osborne (1999). Complex variables and their applications: p185. ↩︎