logo

Summation Formulas for All Integers Using Residue Theorem 📂Complex Anaylsis

Summation Formulas for All Integers Using Residue Theorem

Formulas

The ratio of a polynomial function, that is, a rational function ff, assumes f(n)0f(n) \ne 0 at nZn \in \mathbb{Z} while being limzzf(z)=0\lim_{z \to \infty} z f(z) = 0. When ff has a finite singularity z1,,zmz_{1}, \cdots , z_{m}, n=f(n)=n=1mReszn(πf(z)cotπz) \sum_{n=-\infty}^{\infty} f(n) = - \sum_{n = 1}^{m} \text{Res}_{z_{n}} (\pi f(z) \cot \pi z)

Explanation

It’s meaningful not just to sum up all natural numbers but to represent the sum of all integers within a finite sum. Certainly, if the given ff is an even function, taking half of it could also be applied to finding the sum over natural numbers. Cotangent is involved here and there up to π\pi in a complex form due to multiple multiplications, which might be hard to memorize but it’s good to know such a tool exists.

Derivation 1

Part1. Boundedness on a rectangle of cosπz\cos \pi z

20180119\_130900.png

Considering a path Ck\mathscr{C}_{k} like in the picture above for a natural number kNk \in \mathbb{N}. Let’s assume there exists a natural number k0k_{0} such that when k>k0k>k_{0}, rational function ff is continuous on Ck\mathscr{C}_{k} and limzzf(z)=0\displaystyle \lim_{z \to \infty} z f(z) = 0.

For each Ck\mathscr{C}_{k}, given that it’s continuous and zk+12>k\displaystyle |z| \ge k + {{1 } \over {2}} > k for all ε>0\varepsilon> 0, 1z<δ    zf(z)<ε {{1} \over {|z|} } < \delta \implies |z f(z) | < \varepsilon there exists a δ>0\delta > 0 that satisfies. Selecting k>1δ\displaystyle k > {{1} \over {\delta}}, there exists a kk that satisfies f(z)<εk+1/2\displaystyle |f(z)| < {{\varepsilon} \over {k + 1/2}} about ε>0\varepsilon > 0 on Ck\mathscr{C}_{k}.

  • Addition formulas for trigonometric functions: sin(α+β)=sinαcosβ+cosαsinβsin(αβ)=sinαcosβcosαsinβcos(α+β)=cosαcosβsinαsinβcos(αβ)=cosαcosβ+sinαsinβtan(α+β)=tanα+tanβ1tanαtanβtan(αβ)=tanαtanβ1+tanαtanβ \sin\left( \alpha +\beta \right) =\sin\alpha \cos\beta +\cos\alpha \sin\beta \\ \sin\left( \alpha -\beta \right) =\sin\alpha \cos\beta -\cos\alpha \sin\beta \\ \cos\left( \alpha +\beta \right) =\cos\alpha \cos\beta -\sin\alpha \sin\beta \\ \cos\left( \alpha -\beta \right) =\cos\alpha \cos\beta +\sin\alpha \sin\beta \\ \tan\left( \alpha +\beta \right) =\frac { \tan\alpha +\tan\beta }{ 1-\tan\alpha \tan\beta } \\ \tan\left( \alpha -\beta \right) =\frac { \tan\alpha -\tan\beta }{ 1+\tan\alpha \tan\beta }
  • Relationship between trigonometric functions and hyperbolic functions: sinh(iz)=isinzsin(iz)=isinhzcosh(iz)=coszcos(iz)=coshz \begin{align*} \sinh (iz) =& i \sin z \\ \sin (iz) =& i \sinh z \\ \cosh (iz) =& \cos z \\ \cos (iz) =& \cosh z \end{align*}
  • Relationship between trigonometric functions and exponential functions: sinz=eizeiz2icosz=eiz+eiz2 \sin z = { {e^{iz} - e^{-iz}} \over 2 i } \\ \cos z = { {e^{iz} + e^{-iz}} \over 2 }

If we conveniently set α:=k+1/2\alpha := k + 1/2, then cosαπ=0\cos \alpha \pi = 0 and sinαπ=(1)k\sin \alpha \pi = (-1)^{k}. On Ck\mathscr{C}_{k}, cotπz|\cot \pi z| is z=±α+iyz = \pm \alpha + iy on the vertical line of Ck\mathscr{C}_{k} and yα\left| y \right| \le \alpha, therefore cotπz=cosπzsinπz=cosαπcosiπysin±απsiniπysin±απcosiπy+icosαπsiniπy=cosαπcoshπyisinαπsinhπy±sinαπcoshπy+icosαπsinhπy=0+1sinhπy1coshπy+0=tanhπy<1 \begin{align*} |\cot \pi z| =& \left| {{ \cos \pi z } \over { \sin \pi z }} \right| \\ =& \left| {{ \cos \alpha \pi \cos i \pi y - \sin \pm \alpha \pi \sin i \pi y } \over { \sin \pm \alpha \pi \cos i \pi y + i \cos \alpha \pi \sin i \pi y }} \right| \\ =& \left| {{ \cos \alpha \pi \cosh \pi y \mp i \sin \alpha \pi \sinh \pi y } \over { \pm \sin \alpha \pi \cosh \pi y + i \cos \alpha \pi \sinh \pi y }} \right| \\ =& \left| {{ 0 + 1 \cdot \sinh \pi y} \over { 1 \cdot \cosh \pi y + 0 }} \right| \\ =& \left| \tanh \pi y \right| \\ <& 1 \end{align*} and on the horizontal line of Ck\mathscr{C}_{k}, it’s z=x±iαz = x \pm i \alpha and similarly xα\left| x \right| \le \alpha. Since the magnitude of the imaginary root of a real number is always 11, eiπxeαπ+eiπxe±απeiπxeαπ+eiπxe±απ=eαπ+eαπeiπxeαπeiπxe±απeiπxeαπeiπxe±απ=eαπeαπ \begin{align*} \left| e^{i \pi x} e^{\mp \alpha \pi} + e^{ - i \pi x} e^{\pm \alpha \pi} \right| \le& \left| e^{i \pi x} e^{\mp \alpha \pi} \right| + \left| e^{ - i \pi x} e^{\pm \alpha \pi} \right| = e^{\alpha \pi} + e^{ - \alpha \pi} \\ \left| e^{i \pi x} e^{\mp \alpha \pi} - e^{ - i \pi x} e^{\pm \alpha \pi} \right| \ge& \left| \left| e^{i \pi x} e^{\mp \alpha \pi} \right| - \left| e^{ - i \pi x} e^{\pm \alpha \pi} \right| \right| = e^{\alpha \pi} - e^{ - \alpha \pi} \end{align*} from which we obtain the following: cotπz=cosπzsinπz=eiπz+eiπzeiπzeiπz=eiπxeαπ+eiπxe±απeiπxeαπeiπxe±απeαπ+eαπeαπeαπ=cotαπmax{±cot12π,±cot32π}sinαπ=(1)kcot32π<2 \begin{align*} |\cot \pi z| = \left| {{ \cos \pi z } \over { \sin \pi z }} \right| \\ =& \left| {{ e^{i \pi z} + e^{ - i \pi z} } \over { e^{i \pi z} - e^{ -i \pi z} }} \right| \\ =& \left| {{ e^{i \pi x} e^{\mp \alpha \pi} + e^{ - i \pi x} e^{\pm \alpha \pi} } \over { e^{i \pi x} e^{\mp \alpha \pi} - e^{ -i \pi x} e^{\pm \alpha \pi} }} \right| \\ \le & {{e^{\alpha \pi} + e^{- \alpha \pi}}\over {e^{\alpha \pi} - e^{- \alpha \pi}}} \\ =& \cot \alpha \pi \\ \le& \max \left\{ \pm \cot {{1} \over {2}} \pi, \pm \cot {{3} \over {2}} \pi \right\} & \because \sin \alpha \pi = (-1)^{k} \\ \le& \cot {{3} \over {2}} \pi \\ <& 2 \end{align*} Eventually, cotπz|\cot \pi z| is always bounded on the rectangle Ck\mathscr{C}_{k}.


Part 2. limkCkf(z)cotπzdz=0\lim_{k \to \infty} \int_{\mathscr{C}_{k}} f(z) \cot \pi z dz = 0

The length of Ck\mathscr{C}_{k} is 8(k+12) 8 \left( k + {{1 } \over {2}} \right) thus, by the ML lemma, 1k<δ    Ckf(z)cotπzdz8(k+1/2)2εk+1/2=16ε {{1} \over {k}} < \delta \implies \left| \int_{\mathscr{C}_{k}} f(z) \cot \pi z dz \right| \le {{8 (k + 1/2) 2 \varepsilon } \over { k + 1/2}} = 16 \varepsilon Therefore, limkCkf(z)cotπzdz=0 \lim_{k \to \infty} \int_{\mathscr{C}_{k}} f(z) \cot \pi z dz = 0


Part 3. n=f(n)=n=1mReszn(πf(z)cotπz)\sum_{n=-\infty}^{\infty} f(n) = - \sum_{n = 1}^{m} \text{Res}_{z_{n}} (\pi f(z) \cot \pi z)

Now, defining F(z):=πf(z)cotπzF(z) := \pi f(z) \cot \pi z as f(n)0f(n) \ne 0, nZn \in \mathbb{Z}s are all simple poles FF. Calculating the residues, ResnF(z)=πf(z)cosπz(sinπz)=πf(z)cosπzπcosπzz=n=f(n) \text{Res}_{n} F(z) = {{ \pi f(z) \cos \pi z} \over { (\sin \pi z)' }} = \left. {{ \pi f(z) \cos \pi z} \over { \pi \cos \pi z }} \right|_{z = n} = f(n) According to the assumption, FF still possess singularities z1,z2,,zmz_{1} , z_{2} , \cdots , z_{m}, hence by the residue theorem, limkCkF(z)dz=limk2πi(n=kkf(n)+n=1mResznF(z))=2πi(n=f(n)+n=1mReszn(πf(z)cotπz)) \begin{align*} \lim_{k \to \infty} \int_{\mathscr{C}_{k}} F(z) dz =& \lim_{k \to \infty} 2 \pi i \left( \sum_{n = -k} ^{k} f(n) + \sum_{n = 1} ^{m} \text{Res}_{z_{n}} F(z) \right) \\ =& 2 \pi i \left( \sum_{n=-\infty}^{\infty} f(n) + \sum_{n = 1}^{m} \text{Res}_{z_{n}} (\pi f(z) \cot \pi z) \right) \end{align*} We’ve already shown above that limkCkf(z)cotπzdz=0\displaystyle \lim_{k \to \infty} \int_{\mathscr{C}_{k}} f(z) \cot \pi z dz = 0, therefore n=f(n)=n=1mReszn(πf(z)cotπz) \sum_{n=-\infty}^{\infty} f(n) = - \sum_{n = 1}^{m} \text{Res}_{z_{n}} (\pi f(z) \cot \pi z)

Formula for Alternating Series

Formula for the sum of an alternating series over all integers: For the rational function ff, limzzf(z)=0 \lim_{z \to \infty} z f(z) = 0 assuming f(n)0f(n) \ne 0 at nZn \in \mathbb{Z} while being limzzf(z)=0\lim_{z \to \infty} z f(z) = 0. When ff has a finite singularity z1,,zmz_{1}, \cdots , z_{m}, n=(1)nf(n)=n=1mReszn(πf(z)cscπz) \sum_{n=-\infty}^{\infty} (-1)^{n}f(n) = - \sum_{n = 1}^{m} \text{Res}_{z_{n}} (\pi f(z) \csc \pi z)

Try deriving it similarly for alternating series by writing it down manually.


  1. Osborne (1999). Complex variables and their applications: p182~184. ↩︎