Taylor Series of the Logarithm Function
Formula1
The logarithm function’s Taylor series is as follows.
$$ \log (1+x) = \sum\limits_{n=1}^\infty \dfrac{(-1)^{n+1} x^{n}}{n}, \qquad |x| \lt 1 $$
Explanation
$x$ also holds for complex numbers. By a convenient change of variable we obtain:
$$ \log z = \sum\limits_{n=1}^{\infty} \dfrac{(-1)^{n+1} (z-1)^{n}}{n}, \qquad |z - 1| \lt 1 $$
Derivation
When $|t| \lt 1$, $\dfrac{1}{1+t}$ is the limiting value of a geometric series.
$$ \dfrac{1}{1+t} = \sum\limits_{n=0}^{\infty} (-t)^{n}, \qquad |t| \lt 1 $$
The above series converges absolutely for $|t| \lt 1$. Therefore, under $|t| \lt 1$ we may interchange integration and the limit.
$$ \int_{0}^{x} \dfrac{1}{1+t}dt = \int_{0}^{x} \sum\limits_{n=0}^\infty (-t)^n dt = \sum\limits_{n=0}^\infty \int_{0}^{x} (-t)^n dt = \sum\limits_{n=0}^\infty \dfrac{(-1)^{n} x^{n+1}}{n+1} $$
On the other hand, the left-hand side is the logarithm by the differentiation rule for the logarithm function.
$$ \int_{0}^{x} \dfrac{1}{1+t}dt = \log (1+x) $$
Hence
$$ \log (1+x) = \sum\limits_{n=0}^\infty \dfrac{(-1)^{n} x^{n+1}}{n+1} = \sum\limits_{n=1}^\infty \dfrac{(-1)^{n+1} x^{n}}{n}, \qquad |x| \lt 1 $$
■
Brian C. Hall. Lie Groups, Lie Algebras, and Representations (2nd), p36-37 ↩︎
