Properties of Matrix Exponentials
Definition1
The matrix exponential function $\exp : M_{n \times n}(\mathbb{C}) \to M_{n \times n}(\mathbb{C})$ is defined as follows, and this is called the matrix exponential (function).
$$ \exp (X) = e^{X} := \sum\limits_{m=0}^{\infty} \dfrac{X^{m}}{m!} \tag{1} $$
Here the above limit is to be understood as the limit of matrices.
Explanation
The matrix exponential is a generalization of the exponential function to matrices, and it inherits the properties of the exponential function defined on the real numbers. $X^{0}$ is defined using the identity matrix $I$. Note that $e^{X}$ itself is also a $n \times n$ matrix.
Properties
Let $X, Y \in M_{n \times n}(\mathbb{C})$ and $\alpha, \beta \in \mathbb{C}$. Then the matrix exponential has the following properties.
(a) For every $X \in M_{n \times n}(\mathbb{C})$, the series $(1)$ converges and $e^{X}$ is a continuous function.
(b) $e^{O} = I$ ($O$ is the zero matrix)
(c) $(e^{X})^{\ast} = e^{X^{\ast}}$
(d) $e^{X}$ is an invertible matrix and $(e^{X})^{-1} = e^{-X}$.
(e) $e^{(\alpha + \beta) X} = e^{\alpha X} e^{\beta X}$
(f) If $XY = YX$, then $e^{X+Y} = e^{X} e^{Y} = e^{Y} e^{X}$.
(g) If $C \in \operatorname{GL}(n, \mathbb{C})$, then $e^{C X C^{-1}} = C e^{X} C^{-1}$. In this case $\operatorname{GL}(n, \mathbb{C})$ is the general linear group.
(h) For a diagonal matrix $D = [d_{ii}]$, we have $e^{D} = \begin{bmatrix} e^{d_{11}} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & e^{d_{nn}} \end{bmatrix}$.
Proof
(a)
From the properties of the matrix norm $\| AB \| \le \| A \| \| B \|$ and the triangle inequality $\| A + B \| \le \| A \| + \| B \|$ we obtain
$$ \| X^{m} \| \le \| X \|^{m} $$
$$ \implies \left\| \sum\limits_{m=0}^{\infty} \dfrac{X^{m}}{m!} \right\| \le \sum\limits_{m=0}^{\infty} \left\| \dfrac{X^{m}}{m!} \right\| \le \sum\limits_{m=0}^{\infty} \dfrac{\| X \|^{m}}{m!} \lt \infty $$
Since $\| X \|$ is scalar, the value on the right equals the value $e^{\| X \|}$ of the exponential function defined on the real numbers, and is bounded. Therefore $e^{X}$ is absolutely convergent, hence convergent.
Moreover, by the above inequality and the Weierstrass M-test, $e^{X}$ is uniformly convergent and continuous.
■
(b)
Trivial.
■
(c)
From the definition of the matrix exponential and properties of the limit of matrices we obtain
$$ (e^{X})^{\ast} = \left( \lim\limits_{M \to \infty} \sum_{m = 0}^{M} \dfrac{X^{m}}{m!}\right)^{\ast} = \lim\limits_{M \to \infty} \left( \sum_{m = 0}^{M} \dfrac{X^{m}}{m!}\right)^{\ast} = \lim\limits_{M \to \infty} \sum_{m = 0}^{M} \dfrac{(X^{\ast})^{m}}{m!} = e^{X^{\ast}} $$
■
(d)
Method 1
The product of two convergent series can be expressed as follows.
$$ \begin{align*} e^{X} e^{-X} &= \left( \sum\limits_{m = 0}^{\infty} \dfrac{X^{m}}{m!} \right) \left( \sum\limits_{m = 0}^{\infty} \dfrac{(-1)^{m}X^{m}}{m!} \right) \\ &= \sum_{m = 0}^{\infty} \sum_{k = 0}^{m} \dfrac{X^{k}}{k!} \dfrac{(-1)^{m-k}X^{m-k}}{(m-k)!} \\ &= \sum_{m = 0}^{\infty} \dfrac{1}{m!} \sum_{k = 0}^{m} \dfrac{m!}{k!(m-k)!} (-1)^{m-k}X^{m} \\ &= \sum_{m = 0}^{\infty} \dfrac{X^{m}}{m!} \left( \sum_{k = 0}^{m} \dfrac{m!}{k!(m-k)!} (-1)^{m-k} \right) \end{align*} $$
The value inside the parentheses is given by the binomial theorem.
$$ \sum_{k = 0}^{m} \dfrac{m!}{k!(m-k)!} (-1)^{m-k} = \sum_{k = 0}^{m} \dfrac{m!}{k!(m-k)!} 1^{k}(-1)^{m-k} = (1 + (-1))^{m} $$
This value equals $1$ only when $m=0$, and equals $0$ otherwise; hence we obtain the following conclusion.
$$ e^{X}e^{-X} = \dfrac{X^{0}}{0!} = I $$
■
Method 2
It follows by substituting $Y = -X$ into (f).
■
(e)
It follows as a corollary of (f).
■
(f)
The proof is analogous to the proof of (d) Method 1. $e^{X}e^{Y}$ is as follows.
$$ e^{X}e^{Y} = \sum_{m = 0}^{\infty} \dfrac{1}{m!} \left( \sum_{k = 0}^{m} \dfrac{m!}{k!(m-k)!} X^{m}Y^{m-k} \right) $$
Since $X$ and $Y$ commute, by the binomial theorem we obtain
$$ (X + Y)^{m} = \sum_{k = 0}^{m} \dfrac{m!}{k!(m-k)!} X^{m}Y^{m-k} $$
$$ \implies e^{X}e^{Y} = \sum\limits_{m = 0}^{\infty}\dfrac{(X + Y)^{m}}{m!} = e^{X+Y} = e^{Y}e^{X} $$
■
(g)
From the definition of $e^{X}$ and properties of the limit of matrices we have
$$ \begin{align*} e^{CXC^{-1}} &= \sum\limits_{m = 0}^{\infty} \dfrac{(C X C^{-1})^{m}}{m!} \\ &= \sum\limits_{m = 0}^{\infty} \dfrac{C X^{m} C^{-1}}{m!} \\ &= \lim\limits_{M \to \infty}\sum\limits_{m = 0}^{M} \dfrac{C X^{m} C^{-1}}{m!} \\ &= \lim\limits_{M \to \infty} C \left( \sum\limits_{m = 0}^{M} \dfrac{X^{m}}{m!} \right) C^{-1} \\ &= C \left( \lim\limits_{M \to \infty} \sum\limits_{m = 0}^{M} \dfrac{X^{m}}{m!} \right) C^{-1} \\ &= C e^{X} C^{-1} \end{align*} $$
■
Brian C. Hall. Lie Groups, Lie Algebras, and Representations (2nd), p31-34 ↩︎
