logo

Kronecker Delta through Matrices 📂Mathematical Physics

Kronecker Delta through Matrices

Definition

We define δij\delta_{ij}, as shown below, to be the Kronecker delta.

δij={1if i=j0if ij \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \ne j \end{cases}

Explanation

The Kronecker delta is typically encountered around the second year of undergraduate studies in science and engineering when vector calculus becomes prominent. While it is a useful tool for converting complex vector calculations into simpler scalar calculations, it can be challenging to grasp its meaning when first introduced. It may not seem like a function at first glance, and understanding why it is 11 if the subscripts are the same, or 00 if they are different, can be elusive. Let’s explore the Kronecker delta in a way not often explained in textbooks.

Observe that the Kronecker delta has two subscripts, reminiscent of another object with two subscripts: matrices. Specifically, the Kronecker delta δij\delta_{ij} is the element in the iith row and jjth column of an identity matrix (unit matrix) II.

Re-definition

We use δij\delta_{ij} to denote the element of the iith row and jjth column of the identity matrix II, which we call the Kronecker delta.

I=(100010001)=(δ11δ12δ13δ21δ22δ23δ31δ32δ33) I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \delta_{11} & \delta_{12} & \delta_{13} \\ \delta_{21} & \delta_{22} & \delta_{23} \\ \delta_{31} & \delta_{32} & \delta_{33} \end{pmatrix}

Iij=[I]ij=δij={1if i=j0if ij I_{ij} = [I]_{ij} = \delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \ne j \end{cases}

Formulas

Let a=[a1a2a3]T\mathbf{a} = \begin{bmatrix} a_{1} & a_{2} & a_{3} \end{bmatrix}^{\mathsf{T}} and b=[b1b2b3]T\mathbf{b} = \begin{bmatrix} b_{1} & b_{2} & b_{3} \end{bmatrix}^{\mathsf{T}}.

  1. The dot product of two vectors can be expressed using the Kronecker delta in the form of the following bilinear form. ab=aTIb=[a1a2a3][δ11δ12δ13δ21δ22δ23δ31δ32δ33][b1b2b3]=[a1δ11a2δ22a3δ33][b1b2b3]=a1δ11b1+a2δ22b2+a3δ33b3=i=13δiiaibi=δiiaibi \begin{align*} \mathbf{a} \cdot \mathbf{b} = \mathbf{a}^{\mathsf{T}} I \mathbf{b} &= \begin{bmatrix} a_{1} & a_{2} & a_{3} \end{bmatrix} \begin{bmatrix} \delta_{11} & \delta_{12} & \delta_{13} \\ \delta_{21} & \delta_{22} & \delta_{23} \\ \delta_{31} & \delta_{32} & \delta_{33} \end{bmatrix} \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \end{bmatrix} \\ &= \begin{bmatrix} a_{1}\delta_{11} & a_{2}\delta_{22} & a_{3}\delta_{33} \end{bmatrix} \begin{bmatrix} b_{1} \\ b_{2} \\ b_{3} \end{bmatrix} \\ &= a_{1}\delta_{11}b_{1} + a_{2}\delta_{22}b_{2} + a_{3}\delta_{33}b_{3} \\ &= \sum\limits_{i=1}^{3} \delta_{ii}a_{i}b_{i} = \delta_{ii}a_{i}b_{i} \\ \end{align*}

    The final equality uses the Einstein notation.

  2. Using the Einstein notation, the following formula is derived. δii=3δijδjk=δikδiiδjj=9δiiδjj=6(ij) \begin{align*} \delta_{ii} &= 3 \tag{2.1} \\ \delta_{ij}\delta_{jk} &= \delta_{ik} \tag{2.2} \\ \delta_{ii}\delta_{jj} &= 9 \tag{2.3} \\ \delta_{ii}\delta_{jj} &= 6 (i \ne j)\tag{2.4} \end{align*}

    2.1. δii=δii\delta_{ii} = \sum\delta_{ii} is the sum of all diagonal components of the identity matrix, also known as the trace.

    δii=Tr(I)=1+1+1=3 \delta_{ii} = \Tr (I) = 1 + 1 + 1 = 3

    2.2. The matrix product ABAB of two matrices A=[aij]A =[a_{ij}] and B=[bij]B = [b_{ij}] yields the following component in the iith row and kkth column.

    [AB]ik=jaijbjk=aijbjk [AB]_{ik} = \sum\limits_{j} a_{ij}b_{jk} = a_{ij}b_{jk}

    Therefore, δijδjk\delta_{ij}\delta_{jk} is equivalent to the element in the iith row and kkth column of the product of two identity matrices. Since the product of two identity matrices is an identity matrix, this is the same as the element in the iith row and kkth column of the identity matrix, i.e., δik\delta_{ik}.

    2.3. Since it is the product of the traces of two identity matrices, δiiδjj=(iδii)(jδjj)=Tr(I)Tr(I)=3×3=9 \delta_{ii}\delta_{jj} = \left( \sum_{i}\delta_{ii} \right) \left( \sum_{j}\delta_{jj} \right) = \Tr(I) \Tr(I) = 3 \times 3 = 9