logo

Inverse Function 📂Functions

Inverse Function

Definition

For a given surjective function f:XYf: X \to Y, the inverse function ff is defined as follows:

f1:YX,f1(y)=x    f(x)=y f^{-1} : Y \to X, \quad f^{-1}(y) = x \iff f(x) = y

Explanation

By definition, ff is the inverse function of f1f^{-1}.

f=(f1)1 f = (f^{-1})^{-1}

ff1f \circ f^{-1} and f1ff^{-1} \circ f are identity functions IYI_{Y}, IXI_{X} on YY and XX.

ff1:YY,ff1(y)=yyY f \circ f^{-1} : Y \to Y, \quad f \circ f^{-1}(y) = y \quad \forall y \in Y

f1f:XX,f1f(x)=xxX f^{-1} \circ f : X \to X, \quad f^{-1} \circ f(x) = x \quad \forall x \in X