Moment Generating Function of the Laplace Distribution
📂Probability DistributionMoment Generating Function of the Laplace Distribution
X∼ When Laplace(μ,b), the moment-generating function of X is as follows.
m(t)=1−b2t21eμtfor ∣t∣<b1
Proof
By the definition of the moment-generating function,
E(etX)=−∞∫∞etxf(x)dx=−∞∫∞etx2b1e−∣x−μ∣/bdx=2aeμt−∞∫∞etye−a∣y∣dx(y≡x−μ,a≡1/b)=2aeμt−∞∫0e(t+a)ydx+0∫∞e(t−a)ydx=2aeμt([t+a1e(t+a)y]−∞0+[t−a1e(t−a)y]0∞)
Here, the first integral converges when t+a<0, and the second integral converges when t−a>0. Therefore, it is integrable when ∣t∣<a.
E(etX)=2aeμt([t+a1e(t+a)y]−∞0+[t−a1e(t−a)y]0∞)=2aeμt(t+a1−t−a1)=2aeμtt2−a2−2a=a2−t2a2eμt=b211/b2−t21eμt=1−b2t21eμtfor ∣t∣<afor ∣t∣<afor ∣t∣<afor ∣t∣<b1for ∣t∣<b1
■