logo

Differentiation Operators and Symbols 📂Partial Differential Equations

Differentiation Operators and Symbols

Definition1

For a natural number mNm \in \mathbb{N}, a differential operator refers to the following map PP.

P=αmaα(x)Dα,x=(x1,,xn) \begin{equation} P = \sum\limits_{\left| \alpha \right| \le m} a_{\alpha}(x) D^{\alpha},\qquad x = (x_{1}, \dots, x_{n}) \end{equation}

Here, α=(α1,,αn)\alpha = (\alpha_{1}, \dots, \alpha_{n}) is a multi-index. DαD^{\alpha} is as follows.

Dα:=αx1α1xnαn=(x1)α1(x2)α2(xn)αn=x1α1xnαn \begin{align*} D^\alpha &:= \dfrac{\partial ^{|\alpha|} } {{\partial x_{1}}^{\alpha_{1}}\cdots {\partial x_{n}}^{\alpha_{n}}} \\ &= \left( \frac{ \partial }{ \partial x_{1}} \right)^{\alpha_{1}}\left( \frac{ \partial }{ \partial x_{2}} \right)^{\alpha_{2}}\cdots \left( \frac{ \partial }{ \partial x_{n}} \right)^{\alpha_{n}} \\ &= \partial^{\alpha_{1}}_{x_{1}}\cdots\partial^{\alpha_{n}}_{x_{n}} \end{align*}

Explanation

PP is a mapping between suitable function spaces XX and YY. Of course, elements of XX should be differentiable at least once.

P:XY P : X \to Y

Symbol

The polynomial pp, obtained by substituting variable ξ=(ξ1,,ξn)\xi = (\xi_{1}, \dots, \xi_{n}) into DD of (1)(1), is called the total symbol of PP.

p(x,ξ)=αmaα(x)ξα,ξα=ξ1αξnα p(x,\xi) = \sum\limits_{\left| \alpha \right| \le m} a_{\alpha}(x) \xi^{\alpha},\qquad \xi^{\alpha} = \xi^{\alpha}_{1} \dots \xi^{\alpha}_{n}

Also, the following polynomial σ(x,ξ)\sigma (x, \xi) is called the principal symbol of PP.

σ(x,ξ)=α=maα(x)ξα \sigma (x, \xi) = \sum\limits_{\left| \alpha \right| = m} a_{\alpha}(x) \xi^{\alpha}

Explanation

The total symbol pp satisfies (1)(1) by definition, but conversely, a polynomial pp that satisfies (1)(1) can also be defined as the total symbol of PP.

Relation with Fourier Transform

Due to the properties of the Fourier transform, the following holds.

F[Df](ξ)=iξFf(ξ)    Df(x)=F1[iξFf(ξ)](x) \mathcal{F}[Df] (\xi) = i\xi \mathcal{F}f (\xi) \implies Df (x) = \mathcal{F}^{-1} \left[ i\xi \mathcal{F}f (\xi) \right] (x)

Therefore, the following is obtained.

Pf(x)=F1[p(,iξ)f^(ξ)](x)=1(2π)nRnp(x,iξ)f^(ξ)eixξdξ \begin{align} P f(x) &= \mathcal{F}^{-1} \left[ p(\cdot, i\xi) \hat{f}(\xi) \right] (x) \nonumber \\ &= \dfrac{1}{(2 \pi)^{n}}\int_{\mathbb{R}^{n}} p(x,i\xi)\hat{f}(\xi) e^{i x \cdot \xi} d\xi \end{align}