logo

Geodesic Coordinate Mapping and Gaussian Curvature 📂Geometry

Geodesic Coordinate Mapping and Gaussian Curvature

Theorem1

The metric matrix of the geodesic coordinate mapping x:UR3\mathbf{x} : U \to \mathbb{R}^{3} is as follows.

[gij]=[100h2](h>0) \left[ g_{ij} \right] = \begin{bmatrix} 1 & 0 \\ 0 & h^{2} \end{bmatrix} \quad (h \gt 0)

Then, the Gaussian curvature of x\mathbf{x} is as follows.

K=h11h K = -\dfrac{h_{11}}{h}

At this time, (u1,u2)(u^{1}, u^{2}) is the coordinate of UU, and hi=huih_{i} = \dfrac{\partial h}{\partial u^{i}}.

Proof

Gauss’ Theorema Egregium

K=R121g2g K = \dfrac{\sum\limits_{\ell} R_{121}^{\ell}g_{\ell 2}}{g}

Here, RijkR_{ijk}^{\ell} is the coefficient of the Riemann curvature tensor, and gg and gijg_{ij} are coefficients of the Riemann metric.

Since g12=0g_{12} = 0, only R1212R_{121}^{2} needs to be calculated from Gauss’ theorem. By definition,

R1212=Γ112u2Γ122u1+p=12(Γ11pΓp22Γ12pΓp12) R_{121}^{2} = \dfrac{\partial \Gamma_{11}^{2}}{\partial u^{2}} - \dfrac{\partial \Gamma_{12}^{2}}{\partial u^{1}} + \sum\limits_{p=1}^{2} \left( \Gamma_{11}^{p}\Gamma_{p2}^{2} - \Gamma_{12}^{p}\Gamma_{p1}^{2} \right)

Where, Γijk\Gamma_{ij}^{k} is the Christoffel symbol. The Christoffel symbols of the geodesic patch are as follows.

Christoffel symbols of geodesic coordinate mapping

Except for the following, everything is 00.

Γ221=hh1,Γ122=Γ212=h1h,Γ222=h2h \Gamma_{22}^{1} = -hh_{1},\quad \Gamma_{12}^{2} = \Gamma_{21}^{2} = \dfrac{h_{1}}{h},\quad \Gamma_{22}^{2} = \dfrac{h_{2}}{h}

Therefore, we obtain the following.

R1212=Γ112u2Γ122u1+p=12(Γ11pΓp22Γ12pΓp12)=u1h1h+p=12(Γ12pΓp12)=h11hh1h1h2Γ121Γ112Γ122Γ212=h11hh1h1h2(h1)2h2=h11h \begin{align*} R_{121}^{2} &= \dfrac{\partial \Gamma_{11}^{2}}{\partial u^{2}} - \dfrac{\partial \Gamma_{12}^{2}}{\partial u^{1}} + \sum\limits_{p=1}^{2} \left( \Gamma_{11}^{p}\Gamma_{p2}^{2} - \Gamma_{12}^{p}\Gamma_{p1}^{2} \right) \\ &= - \dfrac{\partial }{\partial u^{1}}\dfrac{h_{1}}{h} + \sum\limits_{p=1}^{2} \left( - \Gamma_{12}^{p}\Gamma_{p1}^{2} \right) \\ &= - \dfrac{h_{11}h - h_{1}h_{1}}{h^{2}} - \Gamma_{12}^{1}\Gamma_{11}^{2} - \Gamma_{12}^{2}\Gamma_{21}^{2} \\ &= - \dfrac{h_{11}h - h_{1}h_{1}}{h^{2}} - \dfrac{(h_{1})^{2}}{h^{2}} \\ &= - \dfrac{h_{11}}{h} \end{align*}

Hence, the Gaussian curvature, since g22=g=h2g_{22} = g = h^{2},

K=R1212g22g=(h11h)h2h2=h11h K = \dfrac{R_{121}^{2}g_{22}}{g} = \dfrac{\left( - \dfrac{h_{11}}{h} \right) h^{2}}{h^{2}} = - \dfrac{h_{11}}{h}


  1. Richard S. Millman and George D. Parker, Elements of Differential Geometry (1977), p179 problem 2.3 ↩︎