logo

Geodesic Coordinate Patch Mapping and Christoffel Symbols 📂Geometry

Geodesic Coordinate Patch Mapping and Christoffel Symbols

Theorem1

[gij]=[100h2](h>0) \left[ g_{ij} \right] = \begin{bmatrix} 1 & 0 \\ 0 & h^{2} \end{bmatrix} \quad (h \gt 0)

Then, the Christoffel symbols of x\mathbf{x} are as follows, and except for the below, all are 00.

Γ221=hh1,Γ122=Γ212=h1h,Γ222=h2h \Gamma_{22}^{1} = -hh_{1},\quad \Gamma_{12}^{2} = \Gamma_{21}^{2} = \dfrac{h_{1}}{h},\quad \Gamma_{22}^{2} = \dfrac{h_{2}}{h}

At this time, (u1,u2)(u^{1}, u^{2}) is the coordinate of UU, and hi=huih_{i} = \dfrac{\partial h}{\partial u^{i}} is valid.

Proof

Before proving, let’s do the necessary calculations. Since g11=x1,x1=1g_{11} = \left\langle\mathbf{x}_{1}, \mathbf{x}_{1}\right\rangle = 1,

g11ui=x1,x1ui=2x1i,x1=0 \dfrac{\partial g_{11}}{\partial u_{i}} = \dfrac{\partial \left\langle\mathbf{x}_{1}, \mathbf{x}_{1}\right\rangle}{\partial u_{i}} = 2\left\langle\mathbf{x}_{1i}, \mathbf{x}_{1}\right\rangle = 0

    x11,x1=0 and x12,x1=0(1) \implies \left\langle\mathbf{x}_{11}, \mathbf{x}_{1}\right\rangle = 0 \quad \text{ and } \quad \left\langle\mathbf{x}_{12}, \mathbf{x}_{1}\right\rangle = 0 \tag{1}

Similarly, since g12=x1,x2=0g_{12} = \left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle = 0,

g12ui=x1,x2ui=x1i,x2+x1,x2i=0 \dfrac{\partial g_{12}}{\partial u_{i}} = \dfrac{\partial \left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle}{\partial u_{i}} = \left\langle\mathbf{x}_{1i}, \mathbf{x}_{2}\right\rangle + \left\langle\mathbf{x}_{1}, \mathbf{x}_{2i}\right\rangle = 0

When looking at the case of i=1i=1, x11,x2+x1,x21=0\left\langle \mathbf{x}_{11}, \mathbf{x}_{2}\right\rangle + \left\langle\mathbf{x}_{1}, \mathbf{x}_{21}\right\rangle = 0, and by (1)(1), it becomes x11,x2=0\left\langle \mathbf{x}_{11}, \mathbf{x}_{2} \right\rangle = 0. When i=2i=2,

x12,x2+x1,x22=0(2) \left\langle\mathbf{x}_{12}, \mathbf{x}_{2}\right\rangle + \left\langle\mathbf{x}_{1}, \mathbf{x}_{22}\right\rangle = 0 \tag{2}

Also, since h=g22=x2,x2h = \sqrt{g_{22}} = \sqrt{\left\langle \mathbf{x}_{2}, \mathbf{x}_{2} \right\rangle},

hi=hui=x2,x2ui=12x2,x22x2i,x2=1hx2i,x2 h_{i} = \dfrac{\partial h}{\partial u^{i}} = \dfrac{\partial \sqrt{\left\langle \mathbf{x}_{2}, \mathbf{x}_{2} \right\rangle}}{\partial u^{i}} = \dfrac{1}{2\sqrt{\left\langle \mathbf{x}_{2}, \mathbf{x}_{2} \right\rangle}} 2\left\langle \mathbf{x}_{2i}, \mathbf{x}_{2} \right\rangle = \dfrac{1}{h}\left\langle \mathbf{x}_{2i}, \mathbf{x}_{2} \right\rangle

    x21,x2=hh1 and x22,x2=hh2(3) \implies \left\langle \mathbf{x}_{21}, \mathbf{x}_{2} \right\rangle = hh_{1} \quad \text{ and } \quad \left\langle \mathbf{x}_{22}, \mathbf{x}_{2} \right\rangle = hh_{2}\tag{3}

Christoffel Symbol

Γijk:=l=12xij,xlglk \Gamma_{ij}^{k} := \sum \limits_{l=1}^{2} \left\langle \mathbf{x}_{ij}, \mathbf{x}_{l} \right\rangle g^{lk}

Now, just substituting what we calculated above into the definition of the Christoffel symbol gives the result.

Γ111=x11,x1g11+x11,x2g21=01+00=0 \begin{align*} \Gamma_{11}^{1} &= \left\langle \mathbf{x}_{11}, \mathbf{x}_{1} \right\rangle g^{11} + \left\langle \mathbf{x}_{11}, \mathbf{x}_{2} \right\rangle g^{21} \\ &= 0 \cdot 1 + 0 \cdot 0 = 0 \end{align*}

Γ121=Γ211=x12,x1g11+x12,x2g21=01+x12,x20=0 \begin{align*} \Gamma_{12}^{1} = \Gamma_{21}^{1} &= \left\langle \mathbf{x}_{12}, \mathbf{x}_{1} \right\rangle g^{11} + \left\langle \mathbf{x}_{12}, \mathbf{x}_{2} \right\rangle g^{21} \\ &= 0 \cdot 1 + \left\langle \mathbf{x}_{12}, \mathbf{x}_{2} \right\rangle \cdot 0 = 0 \end{align*}

Γ221=x22,x1g11+x22,x2g21=x22,x11+x22,x20=x22,x1=x12,x2 by (2)=hh1 by (3) \begin{align*} \Gamma_{22}^{1} &= \left\langle \mathbf{x}_{22}, \mathbf{x}_{1} \right\rangle g^{11} + \left\langle \mathbf{x}_{22}, \mathbf{x}_{2} \right\rangle g^{21} \\ &= \left\langle \mathbf{x}_{22}, \mathbf{x}_{1} \right\rangle \cdot 1 + \left\langle \mathbf{x}_{22}, \mathbf{x}_{2} \right\rangle \cdot 0 \\ &= \left\langle \mathbf{x}_{22}, \mathbf{x}_{1} \right\rangle = - \left\langle \mathbf{x}_{12}, \mathbf{x}_{2} \right\rangle & \text{ by } (2)\\ &= - hh_{1} & \text{ by } (3)\\ \end{align*}

Γ112=x11,x1g12+x11,x2g22=00+01h2=0 \begin{align*} \Gamma_{11}^{2} &= \left\langle \mathbf{x}_{11}, \mathbf{x}_{1} \right\rangle g^{12} + \left\langle \mathbf{x}_{11}, \mathbf{x}_{2} \right\rangle g^{22} \\ &= 0 \cdot 0 + 0 \cdot \dfrac{1}{h^{2}} = 0 \\ \end{align*}

Γ122=Γ212=x12,x1g12+x12,x2g22=00+hh11h2=h1h \begin{align*} \Gamma_{12}^{2} = \Gamma_{21}^{2} &= \left\langle \mathbf{x}_{12}, \mathbf{x}_{1} \right\rangle g^{12} + \left\langle \mathbf{x}_{12}, \mathbf{x}_{2} \right\rangle g^{22} \\ &= 0 \cdot 0 + hh_{1} \cdot \dfrac{1}{h^{2}} \\ &= \dfrac{h_{1}}{h} \\ \end{align*}

Γ222=x22,x1g12+x22,x2g22=x22,x10+hh21h2=h2h \begin{align*} \Gamma_{22}^{2} &= \left\langle \mathbf{x}_{22}, \mathbf{x}_{1} \right\rangle g^{12} + \left\langle \mathbf{x}_{22}, \mathbf{x}_{2} \right\rangle g^{22} \\ &= \left\langle \mathbf{x}_{22}, \mathbf{x}_{1} \right\rangle \cdot 0 + hh_{2} \cdot \dfrac{1}{h^{2}} \\ &= \dfrac{h_{2}}{h} \\ \end{align*}


  1. Richard S. Millman and George D. Parker, Elements of Differential Geometry (1977), p179 problem 2.3 ↩︎