logo

Integrability of 1/x^p 📂Lemmas

Integrability of 1/x^p

Theorem

The integrability of function f(x)=1xpf(x) = \dfrac{1}{x^{p}} is as follows:

  1. when x(0,1]x \in (0,1], if p<1p \lt 1, then ff is integrable.

  2. when x[1,)x \in [1, \infty), if p>1p \gt 1, then ff is integrable.

Explanation

If xx is less than 11, then pp must also be less than 11, and if xx is greater than 11, then pp must also be greater than 11. Just remember this.

Proof

In the case of x(0,1]x \in (0,1]

In the case of p<1p \lt 1

Since it’s 1p>01 - p \gt 0, it converges as follows:

011xpdx=1p+1x1p01=1p+1(10)=1p+1< \begin{align*} \int_{0}^{1} \dfrac{1}{x^p} dx &= \left. \dfrac{1}{-p+1} x^{1-p} \right|_{0}^{1} \\ &= \dfrac{1}{-p+1} \left( 1 - 0 \right) \\ &= \dfrac{1}{-p+1} \lt \infty \end{align*}

In the case of p>1p \gt 1

Since it’s p1>0p - 1 \gt 0, it converges as follows:

011xpdx=1p+11xp101=1p+1(1)= \begin{align*} \int_{0}^{1} \dfrac{1}{x^p} dx &= \left. \dfrac{1}{-p+1} \dfrac{1}{x^{p-1}} \right|_{0}^{1} \\ &= \dfrac{1}{-p+1} \left( 1 - \infty \right) \\ &= \infty \end{align*}

In the case of p=1p = 1

The integral diverges as follows:

011xdx=logx01=log1()= \int_{0}^{1} \dfrac{1}{x} dx = \left. \log x \right|_{0}^{1} = \log 1 - (-\infty) = \infty


In the case of x[1,)x \in [1, \infty)

In the case of p>1p \gt 1

Since it’s p1>0p - 1 \gt 0, it converges as follows:

11xpdx=1p+11xp11=1p+1(1p11)=1p1< \begin{align*} \int_{1}^{\infty} \dfrac{1}{x^p} dx &= \left. \dfrac{1}{-p+1} \dfrac{1}{x^{p-1}} \right|_{1}^{\infty} \\ &= \dfrac{1}{-p+1} \left( \dfrac{1}{\infty^{p-1}} - 1 \right) \\ &= \dfrac{1}{p-1} \lt \infty \end{align*}

In the case of p<1p \lt 1

Since it’s 1p>0 1-p \gt 0, it diverges as follows:

11xpdx=1p+1x1p1=1p+1(1p1)= \begin{align*} \int_{1}^{\infty} \dfrac{1}{x^p} dx &= \left. \dfrac{1}{-p+1} x^{1-p} \right|_{1}^{\infty} \\ &= \dfrac{1}{-p+1} \left( \infty^{1-p} - 1 \right) \\ &= \infty \end{align*}

In the case of p=1p = 1

The integral diverges as follows:

11xdx=logx1=log()log1= \int_{1}^{\infty} \dfrac{1}{x} dx = \left. \log x \right|_{1}^{\infty} = \log(\infty) - \log 1 = \infty