logo

The Hyperfunctional Derivative of Brownian Motion is White Noise 📂Stochastic Differential Equations

The Hyperfunctional Derivative of Brownian Motion is White Noise

Summary

The distributional derivative of Brownian motion is white noise.

Description

Brownian motion BtB_{t} does not have a derivative in the traditional sense. Therefore, it can be defined as a stochastic process that satisfies the following condition ξ\xi, which is defined as white noise:

E[ξt]=0,tCov(ξt,ξs)=δ0 \begin{align} E[\xi_{t}] &= 0, & \forall t \\ \Cov(\xi_{t}, \xi_{s}) &= \delta_{0} \end{align}

Here, Cov\Cov is the covariance, and δ\delta is the Dirac delta function. If we extend BtB_{t} as a distribution, it can be understood that its distributional derivative satisfies the definition of white noise. In other words, white noise is the weak derivative of Brownian motion.

Proof1

Let B(t,w):[0,)×ΩRnB(t,w) : [0, \infty) \times \Omega \to \mathbb{R}^{n} be a stochastic process of Brownian motion. For convenience, let’s denote it as Bt(ω)=B(t,ω)B_{t}(\omega) = B(t,\omega). Let’s define the following distribution BtB_{t} for BtB_{t}:

Bt[ϕ]:=Btϕ(t)dt,ϕD B_{t} [\phi] := \int B_{t} \phi (t) dt, \quad \forall \phi \in \mathcal{D}

Where ϕ\phi is a test function. The derivative of the distribution BtB_{t} is defined as the following distribution according to the definition:

Bt[ϕ]:=Btϕ(t)dt,ϕD B_{t}^{\prime} [\phi] := - \int B_{t} \phi^{\prime}(t) dt, \quad \forall \phi \in \mathcal{D}

Let’s briefly denote this as ξ(ϕ)=Bt[ϕ]\xi (\phi) = B_{t}^{\prime} [\phi]. Now, we need to show that ξ(ϕ)\xi (\phi) satisfies (1)(1) and (2)(2).

Basic Properties of Brownian Motion

[2] E(Bt)=0E ( B_{t} ) = 0

[4] Cov(Bt,Bs)=E(BtBs)=min(t,s)\Cov ( B_{t} , B_{s} ) = E (B_{t}B_{s}) = \min (t, s)

  • E[ξ(ϕ)]=0E\left[ \xi (\phi) \right] = 0

    E[ξ(ϕ)]=E[Btϕ(t)dt]=E[Bt]ϕ(t)dt=0ϕ(t)dt=0 \begin{align*} E[\xi (\phi)] &= E\left[ - \int B_{t} \phi^{\prime}(t) dt \right] \\ &= - \int E[B_{t}] \phi^{\prime}(t) dt \\ &= - \int 0 \cdot \phi^{\prime}(t) dt = 0 \end{align*}

    The second equals comes from EE being independent of tt, and the third equality is derived from the property [2] of Brownian motion.

  • Cov[ξ,ξ]=δ0\Cov \left[ \xi, \xi \right] = \delta_{0}

    According to property [4] of Brownian motion,

    Cov[ξ(ϕ),ξ(ψ)]=E[ξ(ϕ)ξ(ψ)]=E[Btϕ(t)dtBsψ(s)ds]=E[BtBsϕ(t)ψ(s)dtds]=E[BtBs]ϕ(t)ψ(s)dtds=min(t,s)ϕ(t)ψ(s)dtds \begin{align*} \Cov \left[ \xi (\phi), \xi (\psi) \right] &= E\left[ \xi (\phi) \xi (\psi) \right] \\ &= E\left[ \int B_{t}\phi^{\prime}(t)dt \int B_{s}\psi^{\prime}(s)ds \right] \\ &= E\left[ \int\int B_{t}B_{s}\phi^{\prime}(t)\psi^{\prime}(s) dtds \right] \\ &= \int\int E\left[ B_{t}B_{s} \right] \phi^{\prime}(t)\psi^{\prime}(s) dtds \\ &= \int\int \min(t,s) \phi^{\prime}(t)\psi^{\prime}(s) dtds \\ \end{align*}

    The fourth equals comes from EE being independent of tt and ss, and the fifth equality is based on the property [4] of Brownian motion.

    When ss is fixed, min(t,s)\min (t,s) is a function of tt.

    min(t,s)={t0tssst \min (t,s) = \begin{cases} t & 0 \le t \le s \\ s & s \le t \end{cases}

    Therefore, computing the integral yields,

    min(t,s)ϕ(t)ψ(s)dtds=0stϕ(t)ψ(s)dtds+ssϕ(t)ψ(s)dtds=(0stϕ(t)dt)ψ(s)ds+ssϕ(t)dtψ(s)ds=([tϕ(t)]0s0sϕ(t)dt)ψ(s)ds+s[ϕ(t)]sψ(s)ds=sϕ(s)ψ(s)ds0sϕ(t)dtψ(s)dssϕ(s)ψ(s)dtds=00sϕ(t)dtψ(s)ds=0(0sϕ(t)dt)ψ(s)ds=[(0sϕ(t)dt)ψ(s)]0+0dds(0sϕ(t)dt)ψ(s)ds=0ϕ(s)ψ(s)ds=ϕ(0)ψ(0)=δ0[ϕψ] \begin{align*} &\quad \int\int \min(t,s) \phi^{\prime}(t)\psi^{\prime}(s) dtds \\ &= \int \int_{0}^{s} t \phi^{\prime}(t) \psi^{\prime}(s) dtds + \int \int_{s}^{\infty} s \phi^{\prime}(t) \psi^{\prime}(s) dtds \\ &= \int \left( \int_{0}^{s} t \phi^{\prime}(t) dt \right) \psi^{\prime}(s)ds + \int s \int_{s}^{\infty} \phi^{\prime}(t) dt \psi^{\prime}(s) ds \\ &= \int \left( \left[ t\phi (t) \right]_{0}^{s} - \int_{0}^{s}\phi (t) dt \right) \psi^{\prime}(s)ds + \int s [\phi (t)]_{s}^{\infty} \psi^{\prime}(s) ds \\ &= \int s\phi (s) \psi^{\prime}(s)ds - \int \int_{0}^{s}\phi (t) dt \psi^{\prime}(s) ds - \int s \phi (s) \psi^{\prime}(s) dtds \\ &= - \int_{0}^{\infty} \int_{0}^{s}\phi (t) dt \psi^{\prime}(s) ds = - \int_{0}^{\infty} \left( \int_{0}^{s}\phi (t) dt \right) \psi^{\prime}(s) ds \\ &= - \left[ \left( \int_{0}^{s}\phi (t) dt \right) \psi (s) \right]_{0}^{\infty} + \int_{0}^{\infty} \dfrac{d}{ds}\left( \int_{0}^{s}\phi (t) dt \right) \psi (s) ds \\ &= \int_{0}^{\infty} \phi (s) \psi (s) ds \\ &= \phi (0) \psi (0) \\ &= \delta_{0}[\phi\psi] \\ \end{align*}

        Cov[ξ,ξ]=δ0 \implies \Cov\left[ \xi, \xi \right] = \delta_{0}

    The third and sixth equalities use integration by parts. The seventh equality holds because of ψ()=0\psi (\infty) = 0 and 00ϕ(t)dt=0\displaystyle \int_{0}^{0}\phi (t)dt=0.


  1. Kazimierz Sobczyk, Stochastic Differential Equations (1991), p60-63 ↩︎