Curl of a Vector Function in Curvilinear Coordinates
📂Mathematical PhysicsCurl of a Vector Function in Curvilinear Coordinates
Theorem
In the curvilinear coordinate system, the curl of the vector function F=F(q1,q2,q3)=F1q^1+F2q^2+F3q^3 is as follows.
∇×F=h2h3q^1(∂q2∂(F3h3)−∂q3∂(F2h2))+h1h3q^2(∂q3∂(F1h1)−∂q1∂(F3h3))+h1h2q^3(∂q1∂(F2h2)−∂q2∂(F1h1))=h1h2h31h1q^1∂q1∂F1h1h2q^2∂q2∂F2h2h3q^3∂q3∂F3h3
hi is the scale factor.
Cartesian coordinates:
h1=h2=h3=1
∇×F=(∂y∂Fz−∂z∂Fy)x^+(∂z∂Fx−∂x∂Fz)y^+(∂x∂Fy−∂y∂Fx)z^
Cylindrical coordinates:
h1=1,h2=ρ,h3=1
∇×F=(ρ1∂ϕ∂Fz−∂z∂Fϕ)ρ^+(∂z∂Fρ−∂ρ∂Fz)ϕ^+ρ1(∂ρ∂(ρFϕ)−∂ϕ∂Fρ)z^
Spherical coordinates:
h1=1,h2=r,h3=rsinθ
∇×F=rsinθ1(∂θ∂(Fϕsinθ)−∂ϕ∂Fθ)r^+r1(sinθ1∂ϕ∂Fr−∂r∂(rFϕ))θ^+r1(∂r∂(rFθ)−∂θ∂Fr)ϕ^
Derivation
Method 1
Let’s denote the curvilinear coordinates by (q1,q2,q3).
F=F1q^1+F2q^2+F3q^3
Since curl has linearity,
∇×F=∇×(F1q^1+F2q^2+F3q^3)=i=1∑3∇×(Fiq^i)
Gradient in curvilinear coordinates
∇f=h11∂q1∂fq^1+h21∂q2∂fq^2+h31∂q3∂fq^3=i=1∑3hi1∂qi∂fq^i
By the gradient formula, we get the following.
∇qi=m=1∑3hm1∂qm∂qiq^m=hi1q^i
⟹hi∇qi=q^i
Multiplication formula with the del operator
∇×(fA)=(∇f)×A+f(∇×A)
Substituting (2) into (1) and applying the multiplication formula yields the following.
∇×(Fiq^i)=∇×(Fihi∇qi)=[∇(Fihi)]×∇qi+Fihi∇×(∇qi)=[∇(Fihi)]×∇qi
The last equality holds because the curl of the gradient is 0. Substituting (2) back into the formula and expanding the gradient, we get
[∇(Fihi)]×∇qi=[m=1∑3hm1∂qm∂(Fihi)q^m]×hi1q^i=hj1∂qj∂(Fihi)q^j×hi1q^i+hk1∂qk∂(Fihi)q^k×hi1q^i=hihk1∂qk∂(Fihi)q^j−hihj1∂qj∂(Fihi)q^k
Here, we set the index as q^i×q^j=q^k. By substituting this into (1), we get
∇×F=(h1h31∂q3∂(F1h1)q^2−h1h21∂q2∂(F1h1)q^3)+(h2h11∂q1∂(F2h2)q^3−h2h31∂q3∂(F2h2)q^1)+(h3h21∂q2∂(F3h3)q^1−h3h11∂q1∂(F3h3)q^2)=h1h2h3h1q^1(∂q2∂(F3h3)−∂q3∂(F2h2))+h1h2h3h2q^2(∂q3∂(F1h1)−∂q1∂(F3h3))+h1h2h3h3q^3(∂q1∂(F2h2)−∂q2∂(F1h1))=h1h2h31h1q^1∂q1∂F1h1h2q^2∂q2∂F2h2h3q^3∂q3∂F3h3
■
Method 2
To find the first component of ∇×F, consider the closed curved surface where the q1 coordinates are constant.

Here, ⊙ means the direction emerging through the plane. Therefore, since dσ=h2h3dq2dq3q^1,
∫∇×F⋅dσ≈(∇×F)h2h3dq2dq3⋅q^1
Stokes’ theorem
∫S(∇×v)⋅da=∮Pv⋅dl
By Stokes’ theorem, we get the following.
(∇×F)h2h3dq2dq3⋅q^1=∮F⋅dr
Therefore, the first component of ∇×F can be obtained by calculating the following.
(∇×F)1=(∇×F)⋅q^1=h2h3dq2dq31∮F⋅dr
Let’s think about the closed curve integral divided into 1◯~4◯.
∮F⋅dr=∫1◯F⋅dr+∫2◯F⋅dr+∫3◯F⋅dr+∫4◯F⋅dr
Calculating the integral over the path 1◯, we get
∫1◯F⋅dr≈F(q2,q3)⋅h2(q2,q3)dq2q^2=F2h2dq2
For the path 2◯,
∫2◯F⋅dr≈F(q2+dq2,q3)⋅h3(q2+dq2,q3)dq3q^3=F3(q2+dq2,q3)h3(q2+dq2,q3)dq3≈[F3h3+∂q2∂(F3h3)dq2]dq3
In the last line, Taylor’s approximation was used.
Taylor’s theorem
f(x+dx)≈f(x)+f′(x)dx
Likewise, calculating the remaining integrals, we get
∫3◯F⋅dr=−∫−3◯F⋅dr≈−F(q2,q3+dq3)⋅h2(q2,q3+dq3)dq2q^2=−F2(q2,q3+dq3)h2(q2,q3+dq3)dq2≈−[F2h2+∂q3∂(F2h2)dq3]dq2
∫4◯F⋅dr=−∫−4◯F⋅dr≈F(q2,q3)⋅h3(q2,q3)dq3q^3=F3h3dq3
Therefore,
(∇×F)1=h2h3dq2dq31∮F⋅dr=h2h3dq2dq31[∂q2∂(F3h3)dq2dq3−∂q3∂(F2h2)dq3dq2]=h2h31[∂q2∂(F3h3)−∂q3∂(F2h2)]
The second and third components are obtained in the same way.
■
See also