logo

Lusin's Theorem 📂Measure Theory

Lusin's Theorem

Theorem 1

Let f:ERf : E \to \mathbb{R} be a Lebesgue measurable function defined on the measurable set ERE \subset \mathbb{R}. Then, for any given positive number ϵ>0\epsilon \gt 0, there exists a measurable set ARA \subset \mathbb{R} that satisfies the following.

m(A)ϵ and g=fEA is continuous. m(A) \le \epsilon \quad \text{ and } \quad g = f|_{E\setminus A} \text{ is continuous.}

Here, mm is the Lebesgue measure.

Generalization2

If ff is a measurable function and it holds that ARnA \subset \mathbb{R}^{n} for μ(A)<\mu (A) \lt \infty and f(x)=0 for xAcf(x) = 0 \text{ for } x \in A^{c}, then, for the given ϵ>0\epsilon \gt 0, there exists gg \in Cc(Rn)C_{c}(\mathbb{R}^{n}) that satisfies the following.

supxRng(x)supxRnf(x) and μ({xRn:f(x)g(x)})<ϵ \sup\limits_{x\in \mathbb{R}^{n}} g(x) \le \sup\limits_{x \in \mathbb{R}^{n}} f(x) \quad \text{ and } \quad \mu \left( \left\{ x \in \mathbb{R}^{n} : f(x) \ne g(x) \right\} \right) \lt \epsilon

Explanation

This is known as Lusin’s theorem. In simple terms, there exists a continuous function gg that is almost identical to the measurable function ff. It introduces a proof that does not depend on the Egorov’s theorem and employs topology.

Proof

Since the real space is second-countable, let {Uj}\left\{ U_{j} \right\} be the countable base of the standard topology for R\mathbb{R}. And let UjU^{j} be the open set that satisfies the following.

f1(Uj)Uj and m(Ujf1(Uj))<ϵ2j f^{-1}(U_{j}) \subset U^{j} \quad \text{ and } \quad m(U^{j}\setminus f^{-1}(U_{j})) \lt \dfrac{\epsilon}{2^{j}}

Here, f1(Uj)f^{-1}(U_{j}) is the pre-image of UjU_{j}. And let A=j=1(Ujf1(Uj))A = \bigcup\limits_{j=1}^{\infty} \left( U^{j} \setminus f^{-1}(U_{j}) \right). Then, m(A)<ϵm(A) \lt \epsilon holds.

m(A)<ϵj=112j<ϵ m(A) \lt \epsilon \sum\limits_{j=1}^{\infty}\dfrac{1}{2^{j}} \lt \epsilon

Now, it only remains to show that g=fEAg = f|_{E\setminus A} is continuous. To prove this, assume the following holds (the actual proof will be postponed).

g1(Uj)=Uj(EA)(1) g^{-1}(U_{j}) = U^{j} \cap \left( E \setminus A \right) \tag{1}

Now, if URU \subset \mathbb{R} is an open set, since {Uj}\left\{ U_{j} \right\} is a basis, there exists MM satisfying U=jMUjU = \bigcup_{j \in M} U_{j}. Then, by (1)(1), the following is true.

g1(U)=g1(jMUj)=jMg1(Uj)=(jMUj)(EA) g^{-1}(U) = g^{-1} \bigg( \bigcup_{j \in M} U_{j} \bigg) = \bigcup_{j \in M} g^{-1} \left( U_{j} \right) =\bigg( \bigcup_{j \in M} U^{j} \bigg) \cap \left( E \setminus A \right)

The union of open sets is an open set, so the right-hand side is an open set from EAE\setminus A. Therefore, g1(U)g^{-1}(U) is an open set. According to The equivalent conditions of a continuous function, since g1(U)g^{-1}(U) is an open set for all open sets URU \subset \mathbb{R}, gg is continuous. Now, let’s finish proving (1)(1). g1(Uj)Uj(EA)g^{-1}(U_{j}) \subset U^{j} \cap \left( E \setminus A \right) is trivial by definition. The inclusion in the opposite direction is derived from the following equation.

Uj(EA)  Uj(E[Ujf1(Uj)])=Uj(E[Ujf1(Uj)]c)=UjE[Ujf1(Uj)]c=UjE[(Uj)cf1(Uj)]=UjEf1(Uj)=Ujf1(Uj)=f1(Uj) \begin{align*} U^{j} \cap (E \setminus A)\ \subset\ U^{j} \cap \left( E \setminus [U^{j} \setminus f^{-1}(U_{j})]\right) &= U^{j} \cap \left( E \cap [U^{j} \setminus f^{-1}(U_{j})]^{c}\right) \\ &= U^{j} \cap E \cap [U^{j} \setminus f^{-1}(U_{j})]^{c} \\ &= U^{j} \cap E \cap [ (U^{j})^{c} \cup f^{-1}(U_{j}) ] \\ &= U^{j} \cap E \cap f^{-1}(U_{j}) \\ &= U^{j} \cap f^{-1}(U_{j}) \\ &= f^{-1}(U_{j}) \\ \end{align*}

The first equality is valid by AB=ABcA \setminus B = A \cap B^{c}, and the third equality by (AB)c=AcB(A \setminus B)^{c} = A^{c} \cup B. By applying EA\cap E \setminus A to both sides, the following is obtained.

Uj(EA)g1(Uj) U^{j} \cap (E \setminus A) \subset g^{-1}(U_{j})


  1. Feldman, Marcus B. A proof of Lusin’s theorem The American Mathematical Monthly 88.3 (1981): 191-192. ↩︎

  2. Robert A. Adams and John J. F. Foutnier, Sobolev Space (2nd Edition, 2003), p15 ↩︎