Relationship between simultaneous eigenfunctions of angular momentum and ladder operators
📂Quantum Mechanics Relationship between simultaneous eigenfunctions of angular momentum and ladder operators Summary Let’s denote the angular momentum operators L 2 L^{2} L 2 and L z L_{z} L z , and their eigenvalues as ℓ ( ℓ + 1 ) ℏ 2 \ell(\ell+1)\hbar^{2} ℓ ( ℓ + 1 ) ℏ 2 and m ℏ m\hbar m ℏ . The normalized simultaneous eigenfunctions corresponding to each eigenvalue are referred to as ∣ ℓ , m ⟩ \ket{\ell, m} ∣ ℓ , m ⟩ .
L 2 ∣ ℓ , m ⟩ = ℓ ( ℓ + 1 ) ℏ 2 ∣ ℓ , m ⟩ L z ∣ ℓ , m ⟩ = m ℏ ∣ ℓ , m ⟩
\begin{align*}
L^{2} \ket{\ell, m} &= \ell(\ell+1)\hbar^{2}\ket{\ell, m} \\
L_{z}\ket{\ell, m} &= m\hbar\ket{\ell, m}
\end{align*}
L 2 ∣ ℓ , m ⟩ L z ∣ ℓ , m ⟩ = ℓ ( ℓ + 1 ) ℏ 2 ∣ ℓ , m ⟩ = m ℏ ∣ ℓ , m ⟩
For the ladder operators for angular momentum L ± L_{\pm} L ± and the eigenfunctions ∣ ℓ , m ⟩ \ket{\ell, m} ∣ ℓ , m ⟩ , the following relational expression holds.
L + ∣ ℓ , m ⟩ = ( l − m ) ( l + m + 1 ) ℏ ∣ ℓ , m + 1 ⟩ L − ∣ ℓ , m ⟩ = ( l + m ) ( l − m + 1 ) ℏ ∣ ℓ , m − 1 ⟩
\begin{align*}
L_{+}\ket{\ell, m} &= \sqrt{(l-m)(l+m+1)}\hbar\ket{\ell, m+1} \\
L_{-}\ket{\ell, m} &= \sqrt{(l+m)(l-m+1)}\hbar\ket{\ell, m-1}
\end{align*}
L + ∣ ℓ , m ⟩ L − ∣ ℓ , m ⟩ = ( l − m ) ( l + m + 1 ) ℏ ∣ ℓ , m + 1 ⟩ = ( l + m ) ( l − m + 1 ) ℏ ∣ ℓ , m − 1 ⟩
Explanation Applying the ladder operators L ± L_{\pm} L ± to ∣ ℓ , m ⟩ \ket{\ell, m} ∣ ℓ , m ⟩ results in the eigenvalue equation for L + ∣ ℓ , m ⟩ = ( l − m ) ( l + m + 1 ) ℏ ∣ ℓ , m + 1 ⟩ L − ∣ ℓ , m ⟩ = ( l + m ) ( l − m + 1 ) ℏ ∣ ℓ , m − 1 ⟩
\begin{align*}
L_{+}\ket{\ell, m} &= \sqrt{(l-m)(l+m+1)}\hbar\ket{\ell, m+1} \\
L_{-}\ket{\ell, m} &= \sqrt{(l+m)(l-m+1)}\hbar\ket{\ell, m-1}
\end{align*}
L + ∣ ℓ , m ⟩ L − ∣ ℓ , m ⟩ = ( l − m ) ( l + m + 1 ) ℏ ∣ ℓ , m + 1 ⟩ = ( l + m ) ( l − m + 1 ) ℏ ∣ ℓ , m − 1 ⟩ , increasing (or decreasing) the eigenvalue by ℏ \hbar ℏ .
L z ∣ ℓ , m ⟩ = m ℏ ℓ ∣ ℓ , m ⟩ ⟹ L z L + ∣ ℓ , m ⟩ = ( m + 1 ) ℏ ∣ ℓ , m + 1 ⟩
L_{z} \ket{\ell, m} = m\hbar \ell\ket{\ell, m} \quad \implies L_{z}L_{+}\ket{\ell, m} = (m+1) \hbar \ket{\ell, m+1}
L z ∣ ℓ , m ⟩ = m ℏ ℓ ∣ ℓ , m ⟩ ⟹ L z L + ∣ ℓ , m ⟩ = ( m + 1 ) ℏ ∣ ℓ , m + 1 ⟩
Therefore, L + ∣ ℓ , m ⟩ L_{+}\ket{\ell, m} L + ∣ ℓ , m ⟩ is also an eigenfunction corresponding to the eigenvalue ( m + 1 ) ℏ (m+1)\hbar ( m + 1 ) ℏ . This theorem tells us about the relational expression between L + ∣ ℓ , m ⟩ L_{+}\ket{\ell, m} L + ∣ ℓ , m ⟩ and ∣ ℓ , m + 1 ⟩ \ket{\ell, m+1} ∣ ℓ , m + 1 ⟩ , where the normalized state among the eigenfunctions corresponding to ( m + + 1 ) (m++1) ( m + + 1 ) is referred to as ∣ ℓ , m + 1 ⟩ \ket{\ell, m+1} ∣ ℓ , m + 1 ⟩ .
Proof First, let’s start from the eigenvalue equation of L z L_{z} L z . The possible values of m m m differ by 1 1 1 , thus the following holds.
L z ∣ ℓ , m ⟩ = m ℏ ∣ ℓ , m ⟩ L z ∣ ℓ , m + 1 ⟩ = ( m + 1 ) ℏ ∣ ℓ , m + 1 ⟩
\begin{align*}
L_{z}\ket{\ell, m} &= m\hbar \ket{\ell, m} \\
L_{z}\ket{\ell, m+1} &= (m+1) \hbar \ket{\ell, m+1}
\end{align*}
L z ∣ ℓ , m ⟩ L z ∣ ℓ , m + 1 ⟩ = m ℏ ∣ ℓ , m ⟩ = ( m + 1 ) ℏ ∣ ℓ , m + 1 ⟩
Additionally, since L + L_{+} L + increases the eigenvalue of L z L_{z} L z by ℏ \hbar ℏ ,
L z L + ∣ ℓ , m ⟩ = ( m + 1 ) ℏ L + ∣ ℓ , m ⟩
L_{z} L_{+} \ket{\ell, m} = (m+1) \hbar L_{+} \ket{\ell, m}
L z L + ∣ ℓ , m ⟩ = ( m + 1 ) ℏ L + ∣ ℓ , m ⟩
Thus, ∣ ℓ , m + 1 ⟩ \ket{\ell, m+1} ∣ ℓ , m + 1 ⟩ is also an eigenfunction corresponding to the eigenvalue ( m + 1 ) ℏ (m + 1)\hbar ( m + 1 ) ℏ , and L + ∣ ℓ , m ⟩ L_{+} \ket{\ell, m} L + ∣ ℓ , m ⟩ is also an eigenfunction corresponding to the eigenvalue ( m + 1 ) ℏ (m + 1)\hbar ( m + 1 ) ℏ . Therefore, for some constant C + C_{+} C + , the following holds.
L + ∣ ℓ , m ⟩ = C + ∣ ℓ , m + 1 ⟩ (1)
L_{+}\ket{\ell, m}=C_{+}\ket{\ell, m+1} \tag{1}
L + ∣ ℓ , m ⟩ = C + ∣ ℓ , m + 1 ⟩ ( 1 )
Similarly, we obtain the following equation for L − L_{-} L − .
L − ∣ ℓ , m ⟩ = C − ∣ ℓ , m − 1 ⟩ (2)
L_{-}\ket{\ell, m} = C_{-}\ket{\ell, m-1} \tag{2}
L − ∣ ℓ , m ⟩ = C − ∣ ℓ , m − 1 ⟩ ( 2 )
Note that ( 1 ) (1) ( 1 ) and ( 2 ) (2) ( 2 ) are not eigenvalue equations . To determine the value of C + C_{+} C + , we compute the inner product of L + ∣ ℓ , m ⟩ L_{+}\ket{\ell, m} L + ∣ ℓ , m ⟩ with itself.
⟨ ψ ∣ L + ∗ L + ∣ ψ ⟩ = ⟨ ℓ , m + 1 ∣ C + ∗ C + ∣ ℓ , m + 1 ⟩ = ∣ C + ∣ 2 ⟨ ℓ , m + 1 ∣ ℓ , m + 1 ⟩ = ∣ C + ∣ 2
\begin{align*}
\bra{\psi}L_{+}^{\ast}L_{+}\ket{\psi} &= \bra{\ell, m+1}C_{+}^{\ast}C_{+}\ket{\ell, m+1} \\
&= \left| C_{+} \right|^{2} \braket{\ell, m+1 | \ell, m+1} \\
&= \left| C_{+} \right|^{2}
\end{align*}
⟨ ψ ∣ L + ∗ L + ∣ ψ ⟩ = ⟨ ℓ , m + 1 ∣ C + ∗ C + ∣ ℓ , m + 1 ⟩ = ∣ C + ∣ 2 ⟨ ℓ , m + 1∣ ℓ , m + 1 ⟩ = ∣ C + ∣ 2
Relations of ladder operators
L − L + = L 2 − L z 2 − ℏ L z
L_{-}L_{+} = L^{2} - L_{z}^{2} - \hbar L_{z}
L − L + = L 2 − L z 2 − ℏ L z
The left-hand side of the above equation yields the following upon direct calculation.
⟨ ψ ∣ L + ∗ L + ∣ ψ ⟩ = ⟨ ℓ , m ∣ ( L + ) ∗ L + ∣ ℓ , m ⟩ = ⟨ ℓ , m ∣ L − L + ∣ ℓ , m ⟩ = ⟨ ℓ , m ∣ L 2 − L z 2 − ℏ L z ∣ ℓ , m ⟩ = [ l ( l + 1 ) ℏ 2 − m 2 ℏ 2 − m ℏ 2 ] ⟨ ℓ , m ∣ ℓ , m ⟩ = ℏ 2 ( ℓ 2 + ℓ − m 2 − m ) = ℏ 2 [ ( ℓ 2 − m 2 ) + ( ℓ − m ) ] = ℏ 2 ( ℓ − m ) ( ℓ + m + 1 )
\begin{align*}
\bra{\psi}L_{+}^{\ast}L_{+}\ket{\psi} &= \bra{\ell, m} (L_{+})^{\ast}L_{+} \ket{\ell, m} \\
&= \bra{\ell, m} L_{-}L_{+} \ket{\ell, m} \\
&= \bra{\ell, m} L^{2} -{L_{z}}^{2} - \hbar L_{z} \ket{\ell, m}\\
&= \left[ l(l+1)\hbar ^{2} -m^{2}\hbar^{2} -m\hbar^{2} \right]\braket{\ell, m | \ell, m} \\
&= \hbar^{2} (\ell^{2}+\ell-m^{2}-m) \\
&= \hbar^{2} [(\ell^{2}-m^{2})+(\ell-m)] \\
&= \hbar^{2} (\ell-m)(\ell+m+1)
\end{align*}
⟨ ψ ∣ L + ∗ L + ∣ ψ ⟩ = ⟨ ℓ , m ∣ ( L + ) ∗ L + ∣ ℓ , m ⟩ = ⟨ ℓ , m ∣ L − L + ∣ ℓ , m ⟩ = ⟨ ℓ , m ∣ L 2 − L z 2 − ℏ L z ∣ ℓ , m ⟩ = [ l ( l + 1 ) ℏ 2 − m 2 ℏ 2 − m ℏ 2 ] ⟨ ℓ , m ∣ ℓ , m ⟩ = ℏ 2 ( ℓ 2 + ℓ − m 2 − m ) = ℏ 2 [( ℓ 2 − m 2 ) + ( ℓ − m )] = ℏ 2 ( ℓ − m ) ( ℓ + m + 1 )
Therefore, we obtain the following.
C + = ℏ ( ℓ − m ) ( ℓ + m + 1 )
C_{+} = \hbar\sqrt{(\ell-m)(\ell+m+1)}
C + = ℏ ( ℓ − m ) ( ℓ + m + 1 )
Similarly, calculating C − C_{-} C − yields the following.
C − = ℏ ( ℓ + m ) ( ℓ − m + 1 )
C_{-} = \hbar\sqrt{(\ell+m)(\ell-m+1)}
C − = ℏ ( ℓ + m ) ( ℓ − m + 1 )