logo

Relationship between simultaneous eigenfunctions of angular momentum and ladder operators 📂Quantum Mechanics

Relationship between simultaneous eigenfunctions of angular momentum and ladder operators

Summary

Let’s denote the angular momentum operators L2L^{2} and LzL_{z}, and their eigenvalues as (+1)2\ell(\ell+1)\hbar^{2} and mm\hbar. The normalized simultaneous eigenfunctions corresponding to each eigenvalue are referred to as ,m\ket{\ell, m}.

L2,m=(+1)2,mLz,m=m,m \begin{align*} L^{2} \ket{\ell, m} &= \ell(\ell+1)\hbar^{2}\ket{\ell, m} \\ L_{z}\ket{\ell, m} &= m\hbar\ket{\ell, m} \end{align*}

For the ladder operators for angular momentum L±L_{\pm} and the eigenfunctions ,m\ket{\ell, m}, the following relational expression holds.

L+,m=(lm)(l+m+1),m+1L,m=(l+m)(lm+1),m1 \begin{align*} L_{+}\ket{\ell, m} &= \sqrt{(l-m)(l+m+1)}\hbar\ket{\ell, m+1} \\ L_{-}\ket{\ell, m} &= \sqrt{(l+m)(l-m+1)}\hbar\ket{\ell, m-1} \end{align*}

Explanation

Applying the ladder operators L±L_{\pm} to ,m\ket{\ell, m} results in the eigenvalue equation for L+,m=(lm)(l+m+1),m+1L,m=(l+m)(lm+1),m1 \begin{align*} L_{+}\ket{\ell, m} &= \sqrt{(l-m)(l+m+1)}\hbar\ket{\ell, m+1} \\ L_{-}\ket{\ell, m} &= \sqrt{(l+m)(l-m+1)}\hbar\ket{\ell, m-1} \end{align*} , increasing (or decreasing) the eigenvalue by \hbar.

Lz,m=m,m    LzL+,m=(m+1),m+1 L_{z} \ket{\ell, m} = m\hbar \ell\ket{\ell, m} \quad \implies L_{z}L_{+}\ket{\ell, m} = (m+1) \hbar \ket{\ell, m+1}

Therefore, L+,mL_{+}\ket{\ell, m} is also an eigenfunction corresponding to the eigenvalue (m+1)(m+1)\hbar. This theorem tells us about the relational expression between L+,mL_{+}\ket{\ell, m} and ,m+1\ket{\ell, m+1}, where the normalized state among the eigenfunctions corresponding to (m++1)(m++1) is referred to as ,m+1\ket{\ell, m+1}.

Proof

First, let’s start from the eigenvalue equation of LzL_{z}. The possible values of mm differ by 11, thus the following holds.

Lz,m=m,mLz,m+1=(m+1),m+1 \begin{align*} L_{z}\ket{\ell, m} &= m\hbar \ket{\ell, m} \\ L_{z}\ket{\ell, m+1} &= (m+1) \hbar \ket{\ell, m+1} \end{align*}

Additionally, since L+L_{+} increases the eigenvalue of LzL_{z} by \hbar,

LzL+,m=(m+1)L+,m L_{z} L_{+} \ket{\ell, m} = (m+1) \hbar L_{+} \ket{\ell, m}

Thus, ,m+1\ket{\ell, m+1} is also an eigenfunction corresponding to the eigenvalue (m+1)(m + 1)\hbar, and L+,mL_{+} \ket{\ell, m} is also an eigenfunction corresponding to the eigenvalue (m+1)(m + 1)\hbar. Therefore, for some constant C+C_{+}, the following holds.

L+,m=C+,m+1(1) L_{+}\ket{\ell, m}=C_{+}\ket{\ell, m+1} \tag{1}

Similarly, we obtain the following equation for LL_{-}.

L,m=C,m1(2) L_{-}\ket{\ell, m} = C_{-}\ket{\ell, m-1} \tag{2}

Note that (1)(1) and (2)(2) are not eigenvalue equations. To determine the value of C+C_{+}, we compute the inner product of L+,mL_{+}\ket{\ell, m} with itself.

ψL+L+ψ=,m+1C+C+,m+1=C+2,m+1,m+1=C+2 \begin{align*} \bra{\psi}L_{+}^{\ast}L_{+}\ket{\psi} &= \bra{\ell, m+1}C_{+}^{\ast}C_{+}\ket{\ell, m+1} \\ &= \left| C_{+} \right|^{2} \braket{\ell, m+1 | \ell, m+1} \\ &= \left| C_{+} \right|^{2} \end{align*}

Relations of ladder operators

LL+=L2Lz2Lz L_{-}L_{+} = L^{2} - L_{z}^{2} - \hbar L_{z}

The left-hand side of the above equation yields the following upon direct calculation.

ψL+L+ψ=,m(L+)L+,m=,mLL+,m=,mL2Lz2Lz,m=[l(l+1)2m22m2],m,m=2(2+m2m)=2[(2m2)+(m)]=2(m)(+m+1) \begin{align*} \bra{\psi}L_{+}^{\ast}L_{+}\ket{\psi} &= \bra{\ell, m} (L_{+})^{\ast}L_{+} \ket{\ell, m} \\ &= \bra{\ell, m} L_{-}L_{+} \ket{\ell, m} \\ &= \bra{\ell, m} L^{2} -{L_{z}}^{2} - \hbar L_{z} \ket{\ell, m}\\ &= \left[ l(l+1)\hbar ^{2} -m^{2}\hbar^{2} -m\hbar^{2} \right]\braket{\ell, m | \ell, m} \\ &= \hbar^{2} (\ell^{2}+\ell-m^{2}-m) \\ &= \hbar^{2} [(\ell^{2}-m^{2})+(\ell-m)] \\ &= \hbar^{2} (\ell-m)(\ell+m+1) \end{align*}

Therefore, we obtain the following.

C+=(m)(+m+1) C_{+} = \hbar\sqrt{(\ell-m)(\ell+m+1)}

Similarly, calculating CC_{-} yields the following.

C=(+m)(m+1) C_{-} = \hbar\sqrt{(\ell+m)(\ell-m+1)}