logo

Simultaneous Eigenfunctions of Angular Momentum 📂Quantum Mechanics

Simultaneous Eigenfunctions of Angular Momentum

Summary

Angular momentum operator L2L^{2} and LzL_{z}’s normalized simultaneous eigenfunctions are denoted as l,m\ket{l, m}. The eigenvalue equations are given below.

L2,m=(+1)2,mLz,m=m,m \begin{align*} L^{2} \ket{\ell, m} &= \ell(\ell+1)\hbar^{2}\ket{\ell, m} \\ L_{z}\ket{\ell, m} &= m\hbar\ket{\ell, m} \end{align*}

In this case, \ell can only be integers or half-integers. For a given \ell, the minimum value of mm is -\ell, and the maximum value is \ell.

=0,12,1,32,2,m=,+1,+2,,2,1, for given  \begin{align*} \ell &= 0, \frac{1}{2}, 1, \frac{3}{2}, 2, \cdots \\ m &= -\ell, -\ell+1, -\ell+2, \cdots , \ell-2, \ell-1, \ell \quad \text{ for given } \ell \end{align*}

Explanation

When \ell is an integer, it represents the eigenvalue equation for orbital angular momentum. Orbital angular momentum is the same as the angular momentum we know classically. When it is a half-integer, it is called spin angular momentum and is denoted by S\mathbf S instead of L\mathbf L. This is a unique physical quantity that only appears in quantum phenomena, without a classical counterpart. The simultaneous eigenfunctions of the two operators L2,LzL^{2}, L_{z} are distinguished by ,m\ell, m and are denoted as ,m\ket{\ell, m}.

Derivation

The angular momentum operators L2L^{2} and LzL_{z} commute.

[L2,Lz]=0 \left[ L^{2}, L_{z} \right] = 0

Two commuting operators have simultaneous eigenfunctions, thus the normalized simultaneous eigenfunctions of L2L^{2} and LzL_{z} are denoted as ψ\ket{\psi}, with eigenvalues λ\lambda and μ\mu, respectively. The eigenvalue equation is given below.

L2ψ=λψLzψ=μψ \begin{align*} L^{2} \ket{\psi} &= \lambda \ket{\psi} \\ L_{z}\ket{\psi} &= \mu\ket{\psi} \end{align*}

Ladder operator of the angular momentum operator LzL_{z}

L±=Lx±iLyL2=LL++Lz2+Lz=L+L+Lz2Lz \begin{align*} L_{\pm} &= L_{x} \pm \i L_{y} \\ L^{2} &= L_{-}L_{+} + {L_{z}}^{2} + \hbar L_{z} \\ &= L_{+}L_{-} + {L_{z}}^{2} - \hbar L_{z} \\ \end{align*}

When the ladder operator L±L_{\pm} is applied to the simultaneous eigenfunctions of LzL_{z} and L2L^{2}, it changes the eigenvalue of LzL_{z} by ±\pm \hbar, but does not change the eigenvalue of L2L^{2}.

Lz(L±ψ)=(μ±)L±ψL2(L±ψ)=λL±ψ \begin{align*} L_{z} (L_\pm \ket{\psi}) &= (\mu \pm \hbar)L_\pm \ket{\psi} \\ L^{2} (L_\pm \ket{\psi}) &= \lambda L_\pm \ket{\psi} \end{align*}

This is significant because, since L±L_{\pm} does not change the eigenvalue of L2L^{2}, the eigenvalue of LzL_{z} cannot infinitely increase. Given that L2=Lx2+Ly2+Lz2L^{2} = {L_{x}}^{2} + {L_{y}}^{2} + {L_{z}}^{2} and the eigenfunctions are normalized, when calculating the expectation value,

L2=Lx2+Ly2+Lz2 \braket{L^{2}} = \braket{{L_{x}}^{2}} + \braket{{L_{y}}^{2}} + \braket{{L_{z}}^{2}}

    λ=Lx2+Ly2+μ2μ2 \implies \lambda = \braket{{L_{x}}^{2}} + \braket{{L_{y}}^{2}} + \mu^{2} \ge \mu^{2}

Therefore, the eigenvalue of LzL_{z} cannot grow beyond a certain size. Let the largest eigenvalue be \ell \hbar, and the corresponding eigenfunction be ψmax\ket{\psi_{\text{max}}}. Then, the following two eigenvalue equations are obtained.

Lzψmax=ψmaxL2ψmax=λψmax \begin{align*} L_{z}\ket{\psi_{\text{max}}} &= \ell \hbar \ket{\psi_{\text{max}}} \\ L^{2}\ket{\psi_{\text{max}}} &= \lambda \ket{\psi_{\text{max}}} \end{align*}

Since the maximum eigenvalue of LzL_{z} is equal to the total angular momentum, the xx component value and yy component value of the angular momentum are 00.

Lxψmax=Lyψmax=0 L_{x} \ket{\psi_{\text{max}}} = L_{y} \ket{\psi_{\text{max}}} = 0

The following equation can be derived.

L+ψmax=L+ψmax+iLyψmax=0ψmax+i0ψmax=0 L_{+} \ket{\psi_{\text{max}}} = L_{+}\ket{\psi_{\text{max}}} + \i L_{y}\ket{\psi_{\text{max}}} = 0\ket{\psi_{\text{max}}} + \i 0\ket{\psi_{\text{max}}} = 0

Assuming that L+ψmax=0L_{+} \ket{\psi_{\text{max}}} = 0 is physically meaningless, it is rational to set it as such. Using this property, the following calculations can be made.

L2ψmax=(LL++Lz2+Lz)ψmax=(0+22+2)ψmax=(+1)2ψmax=λψmax \begin{equation} \begin{aligned} L^{2} \ket{\psi_{\text{max}}} &= (L_{-}L_{+} + {L_{z}}^{2} + \hbar L_{z})\ket{\psi_{\text{max}}} \\ &= (0 + \ell^{2}\hbar^{2} + \ell\hbar^{2})\ket{\psi_{\text{max}}} \\ &= \ell(\ell + 1)\hbar^{2} \ket{\psi_{\text{max}}} \\ &= \lambda \ket{\psi_{\text{max}}} \end{aligned} \end{equation}

Thus, λ=(+1)2\lambda = \ell(\ell + 1)\hbar^{2} is obtained. Similarly, the lowest eigenvalue state ψmin\ket{\psi_{\text{min}}} of LzL_{z} can be known to exist. The value of LL_{-} in this state is physically meaningless, so it is rational to set it as 00.

Lψmin=0 L_{-}\ket{\psi_{\text{min}}} = 0

Let the lowest eigenvalue be \ell^{\prime} \hbar, then the eigenvalue equations are as follows.

Lzψmin=ψminL2ψmin=λψmin \begin{align*} L_{z}\ket{\psi_{\text{min}}} &= \ell^{\prime} \hbar \ket{\psi_{\text{min}}} \\ L^{2}\ket{\psi_{\text{min}}} &= \lambda \ket{\psi_{\text{min}}} \end{align*}

Similarly, the following equation is derived.

L2ψmin=(L+L+Lz2Lz)ψmin=(0+222)ψmin=(1)2ψmin=λψmin \begin{equation} \begin{aligned} L^{2} \ket{\psi_{\text{min}}} &= (L_{+}L_{-} + {L_{z}}^{2} - \hbar L_{z})\ket{\psi_{\text{min}}} \\ &= (0 + {\ell^{\prime}}^{2}\hbar^{2} - \ell^{\prime}\hbar^{2})\ket{\psi_{\text{min}}} \\ &= \ell^{\prime}(\ell^{\prime}-1)\hbar^{2} \ket{\psi_{\text{min}}} \\ &= \lambda \ket{\psi_{\text{min}}} \end{aligned} \end{equation}

From (1)(1) and (2)(2), the following equation is derived.

λ=(+1)2λ=(1)2 \begin{align*} \lambda &= \ell(\ell+1)\hbar^{2} \\ \lambda &= \ell^{\prime}(\ell^{\prime}-1)\hbar^{2} \\ \end{align*}

Thus, the following equation holds.

(+1)2=(1)2    (+1)=(1)    (+1)(1)=0    (+)((+1))=0 \begin{align*} && \ell(\ell+1)\hbar^{2} &= \ell^{\prime}(\ell^{\prime}-1)\hbar^{2} \\ \implies&& \ell(\ell+1) &= \ell^{\prime}(\ell^{\prime}-1) \\ \implies&& \ell(\ell+1) - \ell^{\prime}(\ell^{\prime}-1) &= 0 \\ \implies&& ( \ell^{\prime} + \ell )(\ell^{\prime} -(\ell+1) ) &= 0 \\ \end{align*}

Then =+1\ell^{\prime} = \ell + 1 or =\ell^{\prime} = -\ell is obtained. However, since \ell^{\prime}\hbar is the smallest eigenvalue and \ell \hbar is the largest, it cannot be =+1\ell^{\prime} = \ell + 1. Hence, the following is obtained.

= \ell^{\prime} = -\ell

In other words, the largest eigenvalue of LzL_{z} is \ell\hbar, and the smallest is -\ell\hbar.

m -\ell\hbar \le m \le \ell \hbar

Thus, applying LL_{-} to the simultaneous eigenfunction each time changes the corresponding eigenvalues sequentially to \ell \hbar, (1)(\ell - 1)\hbar, (2)(\ell - 2)\hbar, \dots, (+1)(-\ell + 1)\hbar, -\ell \hbar. If the number of all possible states is n+1n+1, then n=\ell - n = -\ell and =n2\ell = \dfrac{n}{2} follow. Therefore, the possible values of \ell are integers or half-integers (half of an integer). Additionally, the possible range of mm is ,+1,+2,,2,1,-\ell, -\ell+1, -\ell+2, \cdots , \ell-2, \ell-1, \ell. Thus, the number of possible values of mm is 2+12\ell+1.