logo

Qubits: The Basic Unit of Information in Quantum Computers

Qubits: The Basic Unit of Information in Quantum Computers

양자정보이론
[ 펼치기 · 접기 ]

Definition1

C\mathbb{C} Let’s denote the two unit vectors in the vector space C2\mathbb{C}^{2}, [10]\begin{bmatrix} 1 \\ 0 \end{bmatrix}, and [01]\begin{bmatrix} 0 \\ 1 \end{bmatrix} using Dirac notation as follows.

0=[10]1=[01] \ket{0} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}\qquad \ket{1} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}

The element of the set {0,1}\left\{ \ket{0}, \ket{1} \right\} is called qubit.

C2\mathbb{C}^{2}’s nntensor product (C2)n=C2C2n\left( \mathbb{C}^{2} \right)^{\otimes n} = \overbrace{\mathbb{C}^{2} \otimes \cdots \otimes \mathbb{C}^{2}}^{n} standard basis

{00,,11} \left\{ \ket{0} \otimes \cdots \otimes \ket{0}, \dots, \ket{1} \otimes \cdots \otimes \ket{1} \right\}

is called nnqubit.

Description

A qubit is short for quantum bit. While a bit is the minimum unit of information processing in a classical computer, a qubit performs that role in a quantum computer.

The nnqubit is simply denoted as follows. If a=(a0,a1,,an1){0,1}na = (a_{0}, a_{1}, \dots, a_{n-1}) \in \left\{ 0, 1 \right\}^{n} is called a nnbit,

a=a0,a1,,an1=a0a1an1=a0a1an1 \begin{align*} \ket{a} &= \ket{a_{0}, a_{1}, \dots, a_{n-1}} \\ &= \ket{a_{0} a_{1} \dots a_{n-1}} \\ &= \ket{a_{0}} \otimes \ket{a_{1}} \otimes \cdots \otimes \ket{a_{n-1}} \end{align*}

Example: (C2)2(\mathbb{C}^{2}) ^{\otimes 2}

Let’s look at the simplest example, where (C2)2=C2C2C4(\mathbb{C}^{2}) ^{\otimes 2} = \mathbb{C}^{2} \otimes \mathbb{C}^{2} \cong \mathbb{C}^{4}. The 22qubit is denoted as follows.

00=0,0=00,01=0,1=0110=1,0=10,11=1,1=11 \ket{00} = \ket{0,0} = \ket{0} \otimes \ket{0},\qquad \ket{01} = \ket{0,1} = \ket{0} \otimes \ket{1} \\ \ket{10} = \ket{1,0} = \ket{1} \otimes \ket{0},\qquad \ket{11} = \ket{1,1} = \ket{1} \otimes \ket{1}

If each of the 22qubits is represented as a matrix, according to the definition of Kronecker product, it is as follows.

00=00=[10][10]=[1[10]0[10]]=[1000]01=01=[10][01]=[1[01]0[01]]=[0100]10=10=[01][10]=[0[10]1[10]]=[0010]11=11=[01][01]=[0[01]1[01]]=[0001] \begin{align*} \ket{00} &= \ket{0} \otimes \ket{0} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \\[1em] 0 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \\ \ket{01} &= \ket{0} \otimes \ket{1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\[1em] 0 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \\ \ket{10} &= \ket{1} \otimes \ket{0} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \\[1em] 1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \\ \ket{11} &= \ket{1} \otimes \ket{1} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \otimes \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\[1em] 1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \end{align*}

Therefore, ikjl=δijδkl\braket{ik | jl} = \delta_{ij}\delta_{kl}. Here, δ\delta is the Kronecker delta. Any element of (C2)2(\mathbb{C}^{2}) ^{\otimes 2} is as follows.

(α00+α11)(β00+β11)=α0β000+α0β101+α1β010+α1β111=α0β000+α0β101+α1β010+α1β111=α0000+α0101+α1010+α1111 \begin{align*} & (\alpha_{0}\ket{0} + \alpha_{1}\ket{1}) \otimes (\beta_{0}\ket{0} + \beta_{1}\ket{1})\\ &= \alpha_{0}\beta_{0} \ket{0} \otimes \ket{0} + \alpha_{0}\beta_{1} \ket{0} \otimes \ket{1} + \alpha_{1}\beta_{0} \ket{1} \otimes \ket{0} + \alpha_{1}\beta_{1} \ket{1} \otimes \ket{1} \\ &= \alpha_{0}\beta_{0} \ket{00} + \alpha_{0}\beta_{1} \ket{01} + \alpha_{1}\beta_{0} \ket{10} + \alpha_{1}\beta_{1} \ket{11} \\ &= \alpha_{00}\ket{00} + \alpha_{01}\ket{01} + \alpha_{10}\ket{10} + \alpha_{11}\ket{11} \\ \end{align*}

In particular, if {a}a{0,1}2\left\{ \ket{a} \right\}_{a \in \left\{ 0, 1 \right\}^{2}} is called the basis of (C2)2(\mathbb{C}^{2}) ^{\otimes 2}, for any ψ(C2)2\ket{\psi} \in (\mathbb{C}^{2}) ^{\otimes 2},

ψ=a{0,1}2aψa=a{0,1}2ψaa \ket{\psi} = \sum\limits_{a \in \left\{ 0, 1 \right\}^{2}} \braket{a | \psi} \ket {a} = \sum\limits_{a \in \left\{ 0, 1 \right\}^{2}} \psi_{a} \ket {a}

The inner product of ψ,ξ(C2)2\ket{\psi}, \ket{\xi} \in (\mathbb{C}^{2}) ^{\otimes 2} is,

ψξ=a{0,1}2ψaξa \braket{\psi | \xi} = \sum\limits_{a \in \left\{ 0, 1 \right\}^{2}} \overline{\psi_{a}} \xi_{a}

Here, ψa\overline{\psi_{a}} is the conjugate complex of ψa\psi_{a}.

See Also


  1. Kim Young-Hoon & Heo Jae-Seong, Quantum Information Theory (2020), p93-95 ↩︎