logo

Schur Decomposition of Square Matrices 📂Matrix Algebra

Schur Decomposition of Square Matrices

Definition

For a given unitary matrix QQ and upper triangular matrix TT, if A=QTQA = Q T Q^{\ast}, then AA is said to have a Schur Factorization.

Theorem

Every square matrix ACm×mA \in \mathbb{C}^{ m \times m} has a Schur Factorization.

Explanation

The downside of eigenvalue diagonalization is that when it is decomposed into A=SΛS1A = S \Lambda S^{-1}, it still requires the effort to find S1S^{-1}. Although it is true that the time to calculate powers significantly decreases, considering that all problems of matrix algebra boil down to finding the inverse, powers may not be needed except for problems that require an enormous amount of them, where the cure may be worse than the disease.

On the other hand, the Schur Factorization, given that TT is an upper triangular matrix and might not be as useful for powers, makes it very easy to find QQ^{\ast}, so handling TT properly can potentially solve problems much faster than eigenvalue diagonalization. Considering that an upper triangular matrix is not that difficult to manage, its versatility can be considered significant. Moreover, beyond everything else, the Schur Factorization has quite relaxed conditions since being a square matrix is sufficient.

Proof

We prove this using mathematical induction for a finite-dimensional mm. Let’s say AmA_{m} is some m×m m \times m matrix.

If m=1m = 1, then A1A_{1} is a scalar, which is trivial.

Assume for m2m \ge 2 that Am1A_{m-1} has a Schur Factorization.

Let x\mathbf{x} be a unit eigenvector corresponding to the eigenvalue λ\lambda, and define U:=[xU1]U := \begin{bmatrix} \mathbf{x} & U_{1} \end{bmatrix} as a unitary matrix, then xAmx=λ\mathbf{x}^{\ast} A_{m} \mathbf{x} = \lambda and U1x=0U_{1}^{\ast} \mathbf{x} = 0

UAmU=[xU1]Am[xU1]=[xAmxxAmU1U1AmxU1AmU1]=[λxAmU1U1λxAm1]=[λB0Am1] \begin{align*} U^{\ast} A_{m} U =& \begin{bmatrix} \mathbf{x}^{\ast} \\ U_{1}^{\ast} \end{bmatrix} A_{m} \begin{bmatrix} \mathbf{x} & U_{1} \end{bmatrix} \\ =& \begin{bmatrix} \mathbf{x}^{\ast} A_{m} \mathbf{x} & \mathbf{x}^{\ast} A_{m} U_{1} \\ U_{1}^{\ast} A_{m} \mathbf{x} & U_{1}^{\ast} A_{m} U_{1} \end{bmatrix} \\ =& \begin{bmatrix} \lambda & \mathbf{x}^{\ast} A_{m} U_{1} \\ U_{1}^{\ast} \lambda \mathbf{x} & A_{m-1} \end{bmatrix} \\ =& \begin{bmatrix} \lambda & B \\ \mathbb{0} & A_{m-1} \end{bmatrix} \end{align*}

BCm1B \in \mathbb{C}^{m-1} is any vector, and by assumption, Am1A_{m-1} has a Schur Factorization.

Therefore, Am1A_{m-1} is represented by some unitary matrix VV and upper triangular matrix TT as Am1=VTVA_{m-1} = V T V^{\ast}.

Then, for a unitary matrix Q:=[100V]Q := \begin{bmatrix} 1 & 0 \\ 0 & V \end{bmatrix} and upper triangular matrix [λBV0T]\begin{bmatrix} \lambda & B V \\ 0 & T \end{bmatrix},

Q[λBV0T]Q=[100V][λBV0T][100V]=[100V][λB0TV]=[λB0VTV]=[λB0Am1] \begin{align*} Q \begin{bmatrix} \lambda & B V \\ 0 & T \end{bmatrix} Q^{\ast} &= \begin{bmatrix} 1 & 0 \\ 0 & V \end{bmatrix} \begin{bmatrix} \lambda & B V \\ 0 & T \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & V^{\ast} \end{bmatrix} \\ =& \begin{bmatrix} 1 & 0 \\ 0 & V \end{bmatrix} \begin{bmatrix} \lambda & B \\ 0 & T V^{\ast} \end{bmatrix} \\ =& \begin{bmatrix} \lambda & B \\ 0 & V T V^{\ast} \end{bmatrix} \\ =& \begin{bmatrix} \lambda & B \\ 0 & A_{m-1} \end{bmatrix} \end{align*}

In other words,

Am=UQ[λBV0T]QU=(UQ)[λBV0T](UQ) \begin{align*} A_{m} =& U Q \begin{bmatrix} \lambda & B V \\ 0 & T \end{bmatrix} Q^{\ast} U^{\ast} \\ =& ( U Q ) \begin{bmatrix} \lambda & B V \\ 0 & T \end{bmatrix} ( U Q )^{\ast} \end{align*}

If Am1A_{m-1} has a Schur Factorization, then AmA_{m} also has a Schur Factorization, therefore, by mathematical induction, every square matrix has a Schur Factorization.