logo

Tensor Product of Product Vectors 📂Linear Algebra

Tensor Product of Product Vectors

Buildup

Let’s denote the set of functions from the finite set Γ\Gamma to the complex number space as indicated by CΓ\mathbb{C}^{\Gamma}.

CΓ={f:ΓC} \mathbb{C}^{\Gamma} = \left\{ f : \Gamma \to \mathbb{C} \right\}

When Γ=n={1,,n}\Gamma = \mathbf{n} = \left\{ 1, \dots, n \right\}, it essentially becomes Cn=Cn\mathbb{C}^{\mathbf{n}} = \mathbb{C}^{n}, and the tensor product of vector spaces is defined as follows.

CΓ1CΓ2:=CΓ1×Γ2 \mathbb{C}^{\Gamma_{1}} \otimes \mathbb{C}^{\Gamma_{2}} := \mathbb{C}^{\Gamma_{1} \times \Gamma_{2}}

Assuming viCΓiv_{i} \in \mathbb{C}^{\Gamma_{i}} and ni=Γin_{i} = \left| \Gamma_{i} \right|, let the standard basis corresponding to CΓi\mathbb{C}^{\Gamma_{i}} be denoted as {eji}jiΓi\left\{ e_{j_{i}} \right\}_{j_{i} \in \Gamma_{i}} respectively. Then, viv_{i} can be represented as follows.

v1:{1,,n1}Cv2:{1,,n2}Cv1=(v1(1),,v1(n1))Cn1v2=(v2(1),,v2(n2))Cn2=j1=1n1v1(j1)ej1=j2=1n2v2(j2)ej2 \begin{align*} v_{1} &: \left\{ 1, \dots, n_{1} \right\} \to \mathbb{C} &&& v_{2} &: \left\{ 1, \dots, n_{2} \right\} \to \mathbb{C} \\ v_{1} &= (v_{1}(1), \dots, v_{1}(n_{1})) \in \mathbb{C}^{n_{1}} &&& v_{2} &= (v_{2}(1), \dots, v_{2}(n_{2})) \in \mathbb{C}^{n_{2}} \\ & = \sum \limits_{j_{1} = 1}^{n_{1}}v_{1}(j_{1}) e_{j_{1}} &&&& = \sum \limits_{j_{2} = 1}^{n_{2}}v_{2}(j_{2}) e_{j_{2}} \end{align*}

The elements of the tensor product CΓ1CΓ2\mathbb{C}^{\Gamma_{1}} \otimes \mathbb{C}^{\Gamma_{2}} that can be represented as v1v2v_{1} \otimes v_{2} are called the product vector of v1v_{1} and v2v_{2}.

Definition

The product vector v1v2v_{1} \otimes v_{2} of v1v_{1} and v2v_{2} is defined as follows.

v1v2=(j1Γ1v1(j1)ej1)(j2Γ2v2(j2)ej2):=(j1,j2)Γ1×Γ2(i=12vi(ji))ej1ej2 \begin{align*} v_{1} \otimes v_{2} &= \left( \sum \limits_{j_{1} \in \Gamma_{1}}v_{1}(j_{1}) e_{j_{1}} \right) \otimes \left( \sum \limits_{j_{2} \in \Gamma_{2}}v_{2}(j_{2}) e_{j_{2}} \right) \\ &:= \sum\limits_{(j_{1}, j_{2}) \in \Gamma_{1} \times \Gamma_{2}} \left( \prod\limits_{i=1}^{2} v_{i}(j_{i}) \right) e_{j_{1}} \otimes e_{j_{2}} \end{align*}

In this case, v1v2v_{1} \otimes v_{2} becomes an element of CΓ1CΓ2\mathbb{C}^{\Gamma_{1}} \otimes \mathbb{C}^{\Gamma_{2}} by the definition of the tensor product.

v1v2:=(j1,j2)Γ1×Γ2(i=12vi(ji))ej1ej2CΓ1CΓ2 v_{1} \otimes v_{2} := \sum\limits_{(j_{1}, j_{2}) \in \Gamma_{1} \times \Gamma_{2}} \left( \prod\limits_{i=1}^{2} v_{i}(j_{i}) \right) e_{j_{1}} \otimes e_{j_{2}} \in \mathbb{C}^{\Gamma_{1}} \otimes \mathbb{C}^{\Gamma_{2}}

Explanation

Not all elements of CΓ1CΓ2\mathbb{C}^{\Gamma_{1}} \otimes \mathbb{C}^{\Gamma_{2}} can be represented as the product vector form of v1v2v_{1} \otimes v_{2}. For example, the following vector can be expressed as the product of two vectors, but (e1e1)+(e2e2)(e_{1} \otimes e_{1}) + (e_{2} \otimes e_{2}) cannot.

e1e1e1e2+e2e1e2e2=(e1+e2)(e1e2) e_{1} \otimes e_{1} - e_{1} \otimes e_{2} + e_{2} \otimes e_{1} - e_{2} \otimes e_{2} = (e_{1} + e_{2}) \otimes (e_{1} - e_{2})

As a simple example, let’s further unpack the definition above. Let’s say Γ1={1,2}\Gamma_{1} = \left\{ 1, 2 \right\}, Γ2={1,2,3}\Gamma_{2} = \left\{ 1, 2, 3 \right\}. Assume viCΓiv_{i} \in \mathbb{C}^{\Gamma_{i}}. Let the standard basis corresponding to CΓ1=C2\mathbb{C}^{\Gamma_{1}} = \mathbb{C}^{2} be {ej1}j1Γ1\left\{ e_{j_{1}} \right\}_{j_{1} \in \Gamma_{1}}, and the standard basis corresponding to CΓ2=C3\mathbb{C}^{\Gamma_{2}} = \mathbb{C}^{3} be {ej2}j2Γ2\left\{ e_{j_{2}} \right\}_{j_{2} \in \Gamma_{2}}. Then, v1v_{1}, v2v_{2} are as follows.

v1:{1,2}Cv2:{1,2,3}Cv1=(v1(1),v1(2))C2v2=(v2(1),v2(2),v2(3))C3=j1=12v1(j1)ej1=j2=13v2(j2)ej2 \begin{align*} v_{1} &: \left\{ 1, 2 \right\} \to \mathbb{C} &&& v_{2} &: \left\{ 1, 2, 3 \right\} \to \mathbb{C} \\ v_{1} &= (v_{1}(1), v_{1}(2)) \in \mathbb{C}^{2} &&& v_{2} &= (v_{2}(1), v_{2}(2), v_{2}(3)) \in \mathbb{C}^{3} \\ & = \sum \limits_{j_{1} = 1}^{2}v_{1}(j_{1}) e_{j_{1}} &&&& = \sum \limits_{j_{2} = 1}^{3}v_{2}(j_{2}) e_{j_{2}} \end{align*}

Then, the product vector of v1v_{1} and v2v_{2} is as follows.

v1v2=(v1(1),v1(2))(v2(1),v2(2),v2(3))=(j1=12v1(j1)ej1)(j2=13v2(j2)ej2):=(j1,j2)Γ1×Γ2(i=12vi(ji))ej1ej2CΓ1CΓ2=v1(1)v2(1)e1e1+v1(1)v2(2)e1e2+v1(1)v2(3)e1e3+v1(2)v2(1)e1e1+v1(2)v2(2)e1e2+v1(2)v2(3)e1e3=(v1(1)v2(1),v1(1)v2(2),v1(1)v2(3),v1(2)v2(1),v1(2)v2(2),v1(2)v2(3))C6CΓ1CΓ2 \begin{align*} v_{1} \otimes v_{2} &= (v_{1}(1), v_{1}(2)) \otimes (v_{2}(1), v_{2}(2), v_{2}(3)) \\ &= \left( \sum \limits_{j_{1} = 1}^{2} v_{1}(j_{1}) e_{j_{1}} \right) \otimes \left( \sum \limits_{j_{2} = 1}^{3} v_{2}(j_{2}) e_{j_{2}} \right) \\ &:= \sum\limits_{(j_{1}, j_{2}) \in \Gamma_{1} \times \Gamma_{2}} \left( \prod\limits_{i=1}^{2} v_{i}(j_{i}) \right) e_{j_{1}} \otimes e_{j_{2}} \in \mathbb{C}^{\Gamma_{1}} \otimes \mathbb{C}^{\Gamma_{2}} \\ &= v_{1}(1)v_{2}(1)e_{1} \otimes e_{1} + v_{1}(1)v_{2}(2)e_{1} \otimes e_{2} + v_{1}(1)v_{2}(3)e_{1} \otimes e_{3} \\ &\quad + v_{1}(2)v_{2}(1)e_{1} \otimes e_{1} + v_{1}(2)v_{2}(2)e_{1} \otimes e_{2} + v_{1}(2)v_{2}(3)e_{1} \otimes e_{3} \\ &= \left( v_{1}(1)v_{2}(1), v_{1}(1)v_{2}(2), v_{1}(1)v_{2}(3), v_{1}(2)v_{2}(1), v_{1}(2)v_{2}(2), v_{1}(2)v_{2}(3) \right) \\ &\in \mathbb{C}^{6} \cong \mathbb{C}^{\Gamma_{1}} \otimes \mathbb{C}^{\Gamma_{2}} \end{align*}

By carefully observing the components of v1v2v_{1} \otimes v_{2}, one could guess its relation to matrices.

Coordinate Matrix

Consider the matrix space Mm×n(C)M_{m \times n}(\mathbb{C}). If EijE_{ij} has components (i,j)(i,j) as 11 and the rest as 00, it is called an m×nm \times n matrix, and {Eij}\left\{ E_{ij} \right\} becomes the basis of Mm×n(C)M_{m\times n}(\mathbb{C}). Let ϕ\phi be a linear transformation that maps the basis vector eieje_{i} \otimes e_{j} of the tensor product CmCn\mathbb{C}^{m} \otimes \mathbb{C}^{n} to EijE_{ij}.

ϕ:CmCnMm×n(C)eiejEij \begin{align*} \phi : \mathbb{C}^{m} \otimes \mathbb{C}^{n} &\to M_{m \times n} (\mathbb{C}) \\ e_{i} \otimes e_{j} &\mapsto E_{ij} \end{align*}

Since it maps a basis to a basis, it becomes an isomorphism. If two vectors vCmv \in \mathbb{C}^{m}, wCnw \in \mathbb{C}^{n} are as follows,

v=iαiei=[α1αm]w=jβjej=[β1βn] v = \sum_{i} \alpha_{i}e_{i} = \begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{m} \end{bmatrix} \qquad w = \sum_{j} \beta_{j}e_{j} = \begin{bmatrix} \beta_{1} \\ \vdots \\ \beta_{n} \end{bmatrix}

Sending the product vector v,wv, w through ϕ\phi results in the following.

ϕ(vw)=ϕ(i,jαiβjeiej)=i,jαiβjϕ(eiej)=i,jαiβjEij=[α1β1α1βnαmβ1αmβn]=[α1αm][β1βn]=vwT \begin{align*} \phi ( v \otimes w ) &= \phi \left( \sum\limits_{i,j} \alpha_{i}\beta_{j} e_{i} \otimes e_{j} \right) \\ &= \sum\limits_{i,j} \alpha_{i}\beta_{j} \phi \left( e_{i} \otimes e_{j} \right) \\ &= \sum\limits_{i,j} \alpha_{i}\beta_{j} E_{ij} \\ &= \begin{bmatrix} \alpha_{1}\beta_{1} & \cdots & \alpha_{1}\beta_{n} \\ \vdots & \ddots & \vdots \\ \alpha_{m}\beta_{1} & \cdots & \alpha_{m}\beta_{n} \\ \end{bmatrix} \\ &= \begin{bmatrix} \alpha_{1} \\ \vdots \\ \alpha_{m} \end{bmatrix} \begin{bmatrix} \beta_{1} & \cdots & \beta_{n} \end{bmatrix} \\ &= vw^{T} \end{align*}

This corresponds to a matrix whose elements are αiβj\alpha_{i}\beta_{j}. Therefore, by ϕ\phi, the product vector vwv \otimes w corresponds to a single m×nm \times n. The matrix ϕ(vw)=vwT\phi (v \otimes w) = vw^{T} is called the coordinate matrix of vwv \otimes w with respect to the standard basis. This concept can be seen as analogous to a vector’s coordinate vector.

Generalization

For finite sets Γi(1ir)\Gamma_{i} (1 \le i \le r), Γ=Γ1××Γr\Gamma = \Gamma_{1} \times \cdots \times \Gamma_{r}, viCΓiv_{i} \in \mathbb{C}^{\Gamma_{i}}, the product vectors of viv_{i} are defined as follows.

v1vr=(j1Γ1v1(j1)ej1)(jrΓrvr(jr)ejr):=(j1,,jr)Γ(i=1rvi(ji))ej1ejr=CΓ1CΓr \begin{align*} v_{1} \otimes \cdots \otimes v_{r} &= \left( \sum \limits_{j_{1} \in \Gamma_{1}}v_{1}(j_{1}) e_{j_{1}} \right) \otimes \cdots \otimes \left( \sum \limits_{j_{r} \in \Gamma_{r}}v_{r}(j_{r}) e_{j_{r}} \right) \\ &:= \sum\limits_{(j_{1}, \dots, j_{r}) \in \Gamma} \left( \prod\limits_{i=1}^{r} v_{i}(j_{i}) \right) e_{j_{1}} \otimes \cdots \otimes e_{j_{r}} \\ &= \in \mathbb{C}^{\Gamma_{1}} \otimes \cdots \otimes \mathbb{C}^{\Gamma_{r}} \end{align*}

See Also