logo

Controlled NOT(CNOT) Gate

Controlled NOT(CNOT) Gate

양자정보이론
[ 펼치기 · 접기 ]

Definition1

The following vector-valued Boolean function is called the CNOT\operatorname{CNOT} gate.

CNOT:{0,1}2{0,1}2 \operatorname{CNOT} : \left\{ 0, 1 \right\}^{2} \to \left\{ 0, 1 \right\}^{2}

CNOT(a,b)=(a,ab) \operatorname{CNOT} (a,b) = (a, a \oplus b)

  • It is also known as the Feynman gate. 2

Description

The specific calculations of the input and output of the CNOT\operatorname{CNOT} gate are as follows.

CNOT(0,0)=(0,00)=(0,0)CNOT(0,1)=(0,01)=(0,1)CNOT(1,0)=(1,10)=(1,1)CNOT(1,1)=(1,11)=(1,0) \begin{align*} \operatorname{CNOT} (0,0) &= (0, 0 \oplus 0) = (0, 0) \\ \operatorname{CNOT} (0,1) &= (0, 0 \oplus 1) = (0, 1) \\ \operatorname{CNOT} (1,0) &= (1, 1 \oplus 0) = (1, 1) \\ \operatorname{CNOT} (1,1) &= (1, 1 \oplus 1) = (1, 0) \end{align*}

Looking at the table above, it is easy to see that CNOT\operatorname{CNOT} is a reversible function and that composing CNOT\operatorname{CNOT} twice results in an identity function.

Id=CNOTCNOT \operatorname{Id} = \operatorname{CNOT} \circ \operatorname{CNOT}

If only the second value of the output is considered, it is similar to the XOR\text{XOR} gate, hence it is also referred to as the reversible XOR\text{XOR} gate..

부울 함수기호진리표
CNOT\operatorname{CNOT}
입력출력
aabbaaaba \oplus b
00000000
00110011
11001111
11111100

  1. Kim Young-hoon and Heo Jae-seong, Quantum Information Theory (2020), pp. 88-89 ↩︎

  2. https://en.wikipedia.org/wiki/Controlled_NOT_gate ↩︎