Controlled NOT(CNOT) Gate
양자정보이론 | ||||||||||||||||
[ 펼치기 · 접기 ]
|
Definition1
The following vector-valued Boolean function is called the $\operatorname{CNOT}$ gate.
$$ \operatorname{CNOT} : \left\{ 0, 1 \right\}^{2} \to \left\{ 0, 1 \right\}^{2} $$
$$ \operatorname{CNOT} (a,b) = (a, a \oplus b) $$
- It is also known as the Feynman gate. 2
Description
The specific calculations of the input and output of the $\operatorname{CNOT}$ gate are as follows.
$$ \begin{align*} \operatorname{CNOT} (0,0) &= (0, 0 \oplus 0) = (0, 0) \\ \operatorname{CNOT} (0,1) &= (0, 0 \oplus 1) = (0, 1) \\ \operatorname{CNOT} (1,0) &= (1, 1 \oplus 0) = (1, 1) \\ \operatorname{CNOT} (1,1) &= (1, 1 \oplus 1) = (1, 0) \end{align*} $$
Looking at the table above, it is easy to see that $\operatorname{CNOT}$ is a reversible function and that composing $\operatorname{CNOT}$ twice results in an identity function.
$$ \operatorname{Id} = \operatorname{CNOT} \circ \operatorname{CNOT} $$
If only the second value of the output is considered, it is similar to the $\text{XOR}$ gate, hence it is also referred to as the reversible $\text{XOR}$ gate..
부울 함수 | 기호 | 진리표 | ||||||||||||||||||||||||
$\operatorname{CNOT}$ |
|
Kim Young-hoon and Heo Jae-seong, Quantum Information Theory (2020), pp. 88-89 ↩︎