logo

Eigenvalue Diagonalization of Invertible Matrices 📂Matrix Algebra

Eigenvalue Diagonalization of Invertible Matrices

Definition

If there exists a unitary matrix QQ and a diagonal matrix Λ\Lambda that satisfy A=QΛQA = Q^{ \ast } \Lambda Q for ACm×mA \in \mathbb{C}^{ m \times m }, then the matrix AA is said to be unitarily diagonalizable.