Cyclic Subspaces of Vector Spaces
Definition1
Let us consider $T : V \to V$ as a linear transformation on the vector space $V$. Suppose $\mathbf{v} \ne \mathbf{0} \in V$. The following subspace
$$ W = \span\left( \left\{ \mathbf{v}, T\mathbf{v}, T^{2}\mathbf{v}, \dots \right\} \right) $$
is called the $V$ $T$-cyclic subspace generated by $\mathbf{v}$.
Description
The $T$-cyclic subspace is trivially a $T$-invariant subspace. Also, it is the smallest $T$-invariant subspace that includes $\mathbf{v}$.
Theorem1
Let $T : V \to V$ be a linear transformation on the finite-dimensional vector space $V$. Let us define $W$ as the $T$-cyclic subspace generated by $\mathbf{v} \ne \mathbf{0} \in V$. Suppose $k = \dim(W)$. Then,
$\left\{ \mathbf{v}, T\mathbf{v}, \dots, T^{k-1}\mathbf{v} \right\}$ is a basis of $W$.
If $a_{0}\mathbf{v} + a_{1}T \mathbf{v} + \cdots + a_{k-1}T^{k-1} \mathbf{v} + T^{k}\mathbf{v} = \mathbf{0}$, then the characteristic polynomial of the restriction $T|_{W}$ is $$ f(t) = (-1)^{k}\left( a_{0} + a_{1}t + \cdots +a_{k-1}t^{k-1} + t^{k} \right) $$
Proof
■