logo

Cyclic Subspaces of Vector Spaces 📂Linear Algebra

Cyclic Subspaces of Vector Spaces

Definition1

Let us consider T:VVT : V \to V as a linear transformation on the vector space VV. Suppose v0V\mathbf{v} \ne \mathbf{0} \in V. The following subspace

W=span({v,Tv,T2v,}) W = \span\left( \left\{ \mathbf{v}, T\mathbf{v}, T^{2}\mathbf{v}, \dots \right\} \right)

is called the VV TT-cyclic subspace generated by v\mathbf{v}.

Description

The TT-cyclic subspace is trivially a TT-invariant subspace. Also, it is the smallest TT-invariant subspace that includes v\mathbf{v}.

Theorem1

Let T:VVT : V \to V be a linear transformation on the finite-dimensional vector space VV. Let us define WW as the TT-cyclic subspace generated by v0V\mathbf{v} \ne \mathbf{0} \in V. Suppose k=dim(W)k = \dim(W). Then,

  1. {v,Tv,,Tk1v}\left\{ \mathbf{v}, T\mathbf{v}, \dots, T^{k-1}\mathbf{v} \right\} is a basis of WW.

  2. If a0v+a1Tv++ak1Tk1v+Tkv=0a_{0}\mathbf{v} + a_{1}T \mathbf{v} + \cdots + a_{k-1}T^{k-1} \mathbf{v} + T^{k}\mathbf{v} = \mathbf{0}, then the characteristic polynomial of the restriction TWT|_{W} is f(t)=(1)k(a0+a1t++ak1tk1+tk) f(t) = (-1)^{k}\left( a_{0} + a_{1}t + \cdots +a_{k-1}t^{k-1} + t^{k} \right)

Proof

See Also


  1. Stephen H. Friedberg, Linear Algebra (4th Edition, 2002), p313 ↩︎ ↩︎