logo

Various Properties of Convex Functions 📂Functions

Various Properties of Convex Functions

Theorem1

  1. All convex functions are continuous.

  2. If ff is an increasing convex function, and gg is a convex function, then fgf \circ g is also a convex function.

  3. If ff is convex in (a,b)(a, b), and if a<s<t<u<ba \lt s \lt t \lt u \lt b, then f(t)f(s)tsf(u)f(s)usf(u)f(t)ut \dfrac{f(t) - f(s)}{t-s} \le \dfrac{ f(u) - f(s) }{ u - s } \le \dfrac{ f(u) - f(t) }{ u - t }

  4. If ff is a continuous function defined in (a,b)(a, b) that satisfies the following, then it is a convex function. f(x+y2)f(x)+f(y)2,x,y(a,b) f \left( \dfrac{ x + y }{ 2 } \right) \le \dfrac{ f(x) + f(y) }{ 2 },\quad x,y \in (a,b)

  5. Let f=Ff=F^{\prime} be an increasing function. Then FF is convex.

Proof

52.

Let’s say axyba\le x \le y \le b.

F(y)F(x+y2)=x+y2yf(t)dtF(x+y2)F(x)=xx+y2f(t)dt \begin{align*} F(y) - F(\frac{ x + y }{ 2 }) &= \int_{\frac{ x + y }{ 2 }}^{y} f(t) dt \\ F(\frac{ x + y }{ 2 }) - F(x) &= \int_{x}^{\frac{ x + y }{ 2 }} f(t) dt \end{align*}

Since ff is an increasing function,

xx+y2f(t)dtx+y2yf(t)dt \int_{x}^{\frac{ x + y }{ 2 }} f(t) dt \le \int_{\frac{ x + y }{ 2 }}^{y} f(t) dt \ge

    F(x+y2)F(x)F(y)F(x+y2) \implies F(\frac{ x + y }{ 2 }) - F(x) \le F(y) - F(\frac{ x + y }{ 2 })

2    F(x+y2)F(y)+F(x) 2 \implies F(\frac{ x + y }{ 2 }) \le F(y) + F(x)

    F(x+y2)F(y)+F(x)2 \implies F(\frac{ x + y }{ 2 }) \le \dfrac{ F(y) + F(x) }{ 2 }

According to 4., FF is convex.


  1. Walter Rudin, Principles of Mathmatical Analysis (3rd Edition, 1976), p101 ↩︎

  2. https://math.stackexchange.com/questions/1318407/integral-of-an-increasing-function-is-convex ↩︎