Linear Transformations on the Quotient Space
📂Linear Algebra Linear Transformations on the Quotient Space Definition Let V V V be a vector space and T : V → V T : V \to V T : V → V be a linear transformation . Let W ≤ V W \le V W ≤ V be a T T T -invariant subspace . The linear transformation on quotient space T ‾ \overline{T} T is defined as follows:
T ‾ : V / W → V / W v + W ↦ T ( v ) + W
\begin{align*}
\overline{T} : V/W &\to V/W \\
v + W &\mapsto T(v) + W
\end{align*}
T : V / W v + W → V / W ↦ T ( v ) + W
Here, V / W V/W V / W is the quotient space .
Theorem (a) T ‾ \overline{T} T is well-defined.
(b) T ‾ \overline{T} T is indeed a linear transformation .
(c) For the mapping to the quotient space η : V → V / W \eta : V \to V/W η : V → V / W , η T = T ‾ η \eta T = \overline{T} \eta η T = T η holds. That is, the following diagram is commutative:
V → T V ↓ η ↓ η V / W → T ‾ V / W
\begin{CD} V @>T>> V \\\ @VV \eta V @VV \eta V \\\ V/W @> \overline{T} >> V/W \end{CD}
V ↓ ⏐ η V / W T T V ↓ ⏐ η V / W
Proof (a) It suffices to show that when v 1 + W = v 2 + W v_{1} + W = v_{2} + W v 1 + W = v 2 + W , then T ‾ ( v 1 + W ) = T ‾ ( v 2 + W ) \overline{T}(v_{1} + W) = \overline{T}(v_{2} + W) T ( v 1 + W ) = T ( v 2 + W ) holds. Assume v 1 + W = v 2 + W v_{1} + W = v_{2} + W v 1 + W = v 2 + W . By the properties of cosets , this is equivalent to v 1 − v 2 ∈ W v_{1} - v_{2} \in W v 1 − v 2 ∈ W . Therefore, since W W W is T T T -invariant and T T T is a linear transformation,
T ( v 1 ) − T ( v 2 ) = T ( v 1 − v 2 ) ∈ W
T(v_{1}) - T(v_{2}) = T(v_{1} - v_{2}) \in W
T ( v 1 ) − T ( v 2 ) = T ( v 1 − v 2 ) ∈ W
Therefore, since T ( v 1 ) − T ( v 2 ) ∈ W ⟺ T ( v 1 ) + W = T ( v 2 ) + W T(v_{1}) - T(v_{2}) \in W \iff T(v_{1}) + W = T(v_{2}) + W T ( v 1 ) − T ( v 2 ) ∈ W ⟺ T ( v 1 ) + W = T ( v 2 ) + W ,
v 1 + W = v 2 + W ⟹ T ‾ ( v 1 + W ) = T ‾ ( v 2 + W )
v_{1} + W = v_{2} + W \implies \overline{T}(v_{1} + W) = \overline{T}(v_{2} + W)
v 1 + W = v 2 + W ⟹ T ( v 1 + W ) = T ( v 2 + W )
■
(b) Addition and scalar multiplication of cosets
( v 1 + W ) + ( v 2 + W ) = ( v 1 + v 2 ) + W , ∀ v 1 , v 2 ∈ V
(v_{1} + W) + (v_{2} + W) = (v_{1} + v_{2}) + W,\quad \forall v_{1}, v_{2} \in V
( v 1 + W ) + ( v 2 + W ) = ( v 1 + v 2 ) + W , ∀ v 1 , v 2 ∈ V
a ( v + W ) = a v + W ∀ v ∈ V and a ∈ F
a(v + W) = av + W\quad \forall v \in V \text{ and } a \in F
a ( v + W ) = a v + W ∀ v ∈ V and a ∈ F
Since T T T is a linear transformation,
T ‾ ( ( a v 1 + v 2 ) + W ) = T ( a v 1 + v 2 ) + W = ( a T ( v 1 ) + T ( v 2 ) ) + W = ( a T ( v 1 ) + W ) + ( T ( v 2 ) + W ) = a ( T ( v 1 ) + W ) + T ‾ ( v 2 + W ) = a T ‾ ( v 1 + W ) + T ‾ ( v 2 + W )
\begin{align*}
\overline{T}\left( (av_{1} + v_{2}) + W \right)
&= T(av_{1} + v_{2}) + W \\
&= \left( aT(v_{1}) + T(v_{2}) \right) + W \\
&= \left( aT(v_{1}) + W \right) + \left( T(v_{2}) + W \right) \\
&= a\left( T(v_{1}) + W \right) + \overline{T}(v_{2} + W) \\
&= a\overline{T}(v_{1} + W) + \overline{T}(v_{2} + W) \\
\end{align*}
T ( ( a v 1 + v 2 ) + W ) = T ( a v 1 + v 2 ) + W = ( a T ( v 1 ) + T ( v 2 ) ) + W = ( a T ( v 1 ) + W ) + ( T ( v 2 ) + W ) = a ( T ( v 1 ) + W ) + T ( v 2 + W ) = a T ( v 1 + W ) + T ( v 2 + W )
■
(c) It can easily be shown by definition.
η ( T ( v ) ) = T ( v ) + W = T ‾ ( v + W ) = T ‾ ( η ( v ) )
\begin{align*}
\eta\left( T(v) \right)
&= T(v) + W \\
&= \overline{T}(v + W) \\
&= \overline{T}\left( \eta (v) \right)
\end{align*}
η ( T ( v ) ) = T ( v ) + W = T ( v + W ) = T ( η ( v ) )
■