logo

Mapping to the Quotient Space 📂Linear Algebra

Mapping to the Quotient Space

Theorem1

Let VV be a vector space, and WVW \le V a subspace. Define the function η\eta as follows.

η:VV/Wvv+W \begin{align*} \eta : V &\to V/W \\ v &\mapsto v + W \end{align*}

In this case, V/WV/W is the quotient space of VV. Then

Explanation

The result on dimensions (1)(1) can also be obtained by a different proof.

Proof

The following holds, so η\eta is a linear transformation.

η(av+u)=(av+u)+W=(av+W)+(u+W)=a(v+W)+(u+W)=aη(v)+η(u) \begin{align*} \eta (av + u) &= (av + u) + W \\ &= (av + W) + (u + W) \\ &= a(v + W) + (u + W) \\ &= a\eta (v) + \eta (u) \\ \end{align*}

The null vector of V/WV/W is WW. For any wWw \in W, since w+W=Ww + W = W holds, N(η)=WN(\eta) = W is established. Also, for any v+WV/Wv + W \in V/W, since vVv \in V exists, the range of η\eta is R(η)=V/WR(\eta) = V/W. Then, by the dimension theorem,

rank(η)+nullity(η)=dim(V)    dim(R(η))+dim(N(η))=dim(V)    dim(V/W)+dim(W)=dim(V) \begin{align*} &&\rank(\eta) + \nullity(\eta) &= \dim(V) \\ \implies &&\dim(R(\eta)) + \dim(N(\eta)) &= \dim(V) \\ \implies &&\dim(V/W) + \dim(W) &= \dim(V) \\ \end{align*}


  1. Stephen H. Friedberg, Linear Algebra (4th Edition, 2002), p79 ↩︎