logo

Tensors Defined on Differentiable Manifolds 📂Geometry

Tensors Defined on Differentiable Manifolds

Definition1

Let MM be a nn-dimensional differentiable manifold, D(M)\mathcal{D}(M) be the set of differentiable functions on MM, X(M)\mathfrak{X}(M) be the set of all vector fields on MM.

D(M):={all real-valued functions of class C defined on M} \mathcal{D}(M) := \left\{ \text{all real-valued functions of class } C^{\infty} \text{ defined on } M \right\}

X(M):={all vector fileds of calss C on M} \frak{X}(M) := \left\{ \text{all vector fileds of calss } C^{\infty} \text{ on } M \right\}

A multilinear function TT as follows is called a rr-order tensor.

T:X(M)××X(M)rD(M) T : \overbrace{\frak{X}(M) \times \cdots \times \frak{X}(M)}^{r} \to \mathcal{D}(M)

Explanation

X(M)\frak{X}(M) becomes a module over D(M)\mathcal{D}(M). By definition, the following holds. For all X,YX(M), f,gD(M)X, Y \in \frak{X}(M),\ f,g\in \mathcal{D}(M),

T(Y1,,fX+gY,,Yr)=fT(Y1,,X,,Yr)+gT(Y1,,Y,,Yr) T(Y_{1}, \dots, fX + gY, \dots, Y_{r}) = fT(Y_{1}, \dots, X, \dots, Y_{r}) + gT(Y_{1}, \dots, Y, \dots, Y_{r})

The characteristic of tensors is that they depend not on the coordinate system, but only on the value at each point. To illustrate this, fix the point pMp \in M and consider the vector field Ei,,EnX(M)E_{i}, \dots, E_{n} \in \frak{X}(M) that makes {Ei(p)}\left\{ E_{i}(p) \right\}, which is near pp, the basis of the tangent space TpMT_{p}M. This {Ei}\left\{ E_{i} \right\} is called a moving frame on UU. Now, let’s represent the reduction mapping of vector fields YiY_{i} onto UU with the moving frame {Ei}\left\{ E_{i} \right\} as follows.

Y1=i1yi1Ei1,,Yr=iryirEir Y_{1} = \sum_{i_{1}}y_{i_{1}}E_{i_{1}},\quad \dots,\quad Y_{r} = \sum_{i_{r}}y_{i_{r}}E_{i_{r}}

And let’s think of other vector fields {Zj=zkjEkj}X(M)\left\{ Z_{j} = \sum z_{k_{j}}E_{k_{j}} \right\} \subset \frak{X}(M) that are ‘only’ equal in value at the point pp to YiY_{i}.

Zj(p)=Yj(p)    zkj(p)Ekj(p)=ykj(p)Ekj(p)    zkj(p)=ykj \begin{align*} && Z_{j}(p) &= Y_{j}(p) \\ \implies && z_{k_{j}}(p)E_{k_{j}}(p) &= y_{k_{j}}(p)E_{k_{j}}(p) \\ \implies && z_{k_{j}}(p) &= y_{k_{j}} \end{align*}

Then the following is obtained.

T(Y1,Y2,,Yn)(p)=yi1(p)yir(p)T(Ei1(p),,Eir(p))=zi1(p)zir(p)T(Ei1(p),,Eir(p))=T(Z1,Z2,,Zn)(p) \begin{align*} T(Y_{1}, Y_{2}, \dots, Y_{n})(p) &= y_{i_{1}}(p)\cdots y_{i_{r}}(p) T(E_{i_{1}}(p), \dots, E_{i_{r}}(p)) \\ &= z_{i_{1}}(p)\cdots z_{i_{r}}(p) T(E_{i_{1}}(p), \dots, E_{i_{r}}(p)) \\ &= T(Z_{1}, Z_{2}, \dots, Z_{n})(p) \end{align*}

Therefore, T(Y1,Y2,,Yn)(p)T(Y_{1}, Y_{2}, \dots, Y_{n})(p) depends only on the value of YiY_{i} at pp, and not on the coordinate system.

Examples

Curvature Tensor

The Riemann curvature RR, defined as follows, is a 44-order tensor.

R:X(M)×X(M)×X(M)×X(M)D(M) R : \frak{X}(M) \times \frak{X}(M) \times \frak{X}(M) \times \frak{X}(M) \to \mathcal{D}(M)

R(X,Y,Z,W)=R(X,Y)Z,W,X,Y,Z,WX(M) R(X, Y, Z, W) = \left\langle R(X, Y)Z, W \right\rangle, \quad X, Y, Z, W \in \frak{X}(M)

Regarding the moving frame {Xi=xi}\left\{ X_{i} = \dfrac{\partial }{\partial x_{i}} \right\},

R(Xi,Xj,Xk,Xl)=Rijkl R(X_{i}, X_{j}, X_{k}, X_{l}) = R_{ijkl}

Metric Tensor

g:X(M)×X(M)D(M) g : \frak{X}(M) \times \frak{X}(M) \to \mathcal{D}(M)

g(X,Y)=X,Y,X,YX(M) g(X, Y) = \left\langle X, Y \right\rangle, \quad X, Y \in \frak{X}(M)

The Riemannian metric gg is a 22-order tensor.

Connection

:X(M)×X(M)×X(M)D(M) \nabla : \frak{X}(M) \times \frak{X}(M) \times \frak{X}(M) \to \mathcal{D}(M)

(X,Y,Z)=XY,Z,X,Y,ZX(M) \nabla(X, Y, Z) = \left\langle \nabla_{X}Y, Z \right\rangle, \quad X, Y, Z \in \frak{X}(M)

The Levi-Civita connection \nabla, defined as above, is not a tensor since it is not linear with respect to the YY components.

See Also


  1. Manfredo P. Do Carmo, Riemannian Geometry (Eng Edition, 1992), p100-101 ↩︎