Tensors Defined on Differentiable Manifolds
📂Geometry Tensors Defined on Differentiable Manifolds Definition Let M M M be a n n n -dimensional differentiable manifold , D ( M ) \mathcal{D}(M) D ( M ) be the set of differentiable functions on M M M , X ( M ) \mathfrak{X}(M) X ( M ) be the set of all vector fields on M M M .
D ( M ) : = { all real-valued functions of class C ∞ defined on M }
\mathcal{D}(M) := \left\{ \text{all real-valued functions of class } C^{\infty} \text{ defined on } M \right\}
D ( M ) := { all real-valued functions of class C ∞ defined on M }
X ( M ) : = { all vector fileds of calss C ∞ on M }
\frak{X}(M) := \left\{ \text{all vector fileds of calss } C^{\infty} \text{ on } M \right\}
X ( M ) := { all vector fileds of calss C ∞ on M }
A multilinear function T T T as follows is called a r r r -order tensor .
T : X ( M ) × ⋯ × X ( M ) ⏞ r → D ( M )
T : \overbrace{\frak{X}(M) \times \cdots \times \frak{X}(M)}^{r} \to \mathcal{D}(M)
T : X ( M ) × ⋯ × X ( M ) r → D ( M )
Explanation X ( M ) \frak{X}(M) X ( M ) becomes a module over D ( M ) \mathcal{D}(M) D ( M ) . By definition, the following holds. For all X , Y ∈ X ( M ) , f , g ∈ D ( M ) X, Y \in \frak{X}(M),\ f,g\in \mathcal{D}(M) X , Y ∈ X ( M ) , f , g ∈ D ( M ) ,
T ( Y 1 , … , f X + g Y , … , Y r ) = f T ( Y 1 , … , X , … , Y r ) + g T ( Y 1 , … , Y , … , Y r )
T(Y_{1}, \dots, fX + gY, \dots, Y_{r}) = fT(Y_{1}, \dots, X, \dots, Y_{r}) + gT(Y_{1}, \dots, Y, \dots, Y_{r})
T ( Y 1 , … , f X + g Y , … , Y r ) = f T ( Y 1 , … , X , … , Y r ) + g T ( Y 1 , … , Y , … , Y r )
The characteristic of tensors is that they depend not on the coordinate system , but only on the value at each point. To illustrate this, fix the point p ∈ M p \in M p ∈ M and consider the vector field E i , … , E n ∈ X ( M ) E_{i}, \dots, E_{n} \in \frak{X}(M) E i , … , E n ∈ X ( M ) that makes { E i ( p ) } \left\{ E_{i}(p) \right\} { E i ( p ) } , which is near p p p , the basis of the tangent space T p M T_{p}M T p M . This { E i } \left\{ E_{i} \right\} { E i } is called a moving frame on U U U . Now, let’s represent the reduction mapping of vector fields Y i Y_{i} Y i onto U U U with the moving frame { E i } \left\{ E_{i} \right\} { E i } as follows.
Y 1 = ∑ i 1 y i 1 E i 1 , … , Y r = ∑ i r y i r E i r
Y_{1} = \sum_{i_{1}}y_{i_{1}}E_{i_{1}},\quad \dots,\quad Y_{r} = \sum_{i_{r}}y_{i_{r}}E_{i_{r}}
Y 1 = i 1 ∑ y i 1 E i 1 , … , Y r = i r ∑ y i r E i r
And let’s think of other vector fields { Z j = ∑ z k j E k j } ⊂ X ( M ) \left\{ Z_{j} = \sum z_{k_{j}}E_{k_{j}} \right\} \subset \frak{X}(M) { Z j = ∑ z k j E k j } ⊂ X ( M ) that are ‘only’ equal in value at the point p p p to Y i Y_{i} Y i .
Z j ( p ) = Y j ( p ) ⟹ z k j ( p ) E k j ( p ) = y k j ( p ) E k j ( p ) ⟹ z k j ( p ) = y k j
\begin{align*}
&& Z_{j}(p) &= Y_{j}(p) \\
\implies && z_{k_{j}}(p)E_{k_{j}}(p) &= y_{k_{j}}(p)E_{k_{j}}(p) \\
\implies && z_{k_{j}}(p) &= y_{k_{j}}
\end{align*}
⟹ ⟹ Z j ( p ) z k j ( p ) E k j ( p ) z k j ( p ) = Y j ( p ) = y k j ( p ) E k j ( p ) = y k j
Then the following is obtained.
T ( Y 1 , Y 2 , … , Y n ) ( p ) = y i 1 ( p ) ⋯ y i r ( p ) T ( E i 1 ( p ) , … , E i r ( p ) ) = z i 1 ( p ) ⋯ z i r ( p ) T ( E i 1 ( p ) , … , E i r ( p ) ) = T ( Z 1 , Z 2 , … , Z n ) ( p )
\begin{align*}
T(Y_{1}, Y_{2}, \dots, Y_{n})(p)
&= y_{i_{1}}(p)\cdots y_{i_{r}}(p) T(E_{i_{1}}(p), \dots, E_{i_{r}}(p)) \\
&= z_{i_{1}}(p)\cdots z_{i_{r}}(p) T(E_{i_{1}}(p), \dots, E_{i_{r}}(p)) \\
&= T(Z_{1}, Z_{2}, \dots, Z_{n})(p)
\end{align*}
T ( Y 1 , Y 2 , … , Y n ) ( p ) = y i 1 ( p ) ⋯ y i r ( p ) T ( E i 1 ( p ) , … , E i r ( p )) = z i 1 ( p ) ⋯ z i r ( p ) T ( E i 1 ( p ) , … , E i r ( p )) = T ( Z 1 , Z 2 , … , Z n ) ( p )
Therefore, T ( Y 1 , Y 2 , … , Y n ) ( p ) T(Y_{1}, Y_{2}, \dots, Y_{n})(p) T ( Y 1 , Y 2 , … , Y n ) ( p ) depends only on the value of Y i Y_{i} Y i at p p p , and not on the coordinate system .
Examples Curvature Tensor The Riemann curvature R R R , defined as follows, is a 4 4 4 -order tensor.
R : X ( M ) × X ( M ) × X ( M ) × X ( M ) → D ( M )
R : \frak{X}(M) \times \frak{X}(M) \times \frak{X}(M) \times \frak{X}(M) \to \mathcal{D}(M)
R : X ( M ) × X ( M ) × X ( M ) × X ( M ) → D ( M )
R ( X , Y , Z , W ) = ⟨ R ( X , Y ) Z , W ⟩ , X , Y , Z , W ∈ X ( M )
R(X, Y, Z, W) = \left\langle R(X, Y)Z, W \right\rangle, \quad X, Y, Z, W \in \frak{X}(M)
R ( X , Y , Z , W ) = ⟨ R ( X , Y ) Z , W ⟩ , X , Y , Z , W ∈ X ( M )
Regarding the moving frame { X i = ∂ ∂ x i } \left\{ X_{i} = \dfrac{\partial }{\partial x_{i}} \right\} { X i = ∂ x i ∂ } ,
R ( X i , X j , X k , X l ) = R i j k l
R(X_{i}, X_{j}, X_{k}, X_{l}) = R_{ijkl}
R ( X i , X j , X k , X l ) = R ijk l
Metric Tensor g : X ( M ) × X ( M ) → D ( M )
g : \frak{X}(M) \times \frak{X}(M) \to \mathcal{D}(M)
g : X ( M ) × X ( M ) → D ( M )
g ( X , Y ) = ⟨ X , Y ⟩ , X , Y ∈ X ( M )
g(X, Y) = \left\langle X, Y \right\rangle, \quad X, Y \in \frak{X}(M)
g ( X , Y ) = ⟨ X , Y ⟩ , X , Y ∈ X ( M )
The Riemannian metric g g g is a 2 2 2 -order tensor.
Connection ∇ : X ( M ) × X ( M ) × X ( M ) → D ( M )
\nabla : \frak{X}(M) \times \frak{X}(M) \times \frak{X}(M) \to \mathcal{D}(M)
∇ : X ( M ) × X ( M ) × X ( M ) → D ( M )
∇ ( X , Y , Z ) = ⟨ ∇ X Y , Z ⟩ , X , Y , Z ∈ X ( M )
\nabla(X, Y, Z) = \left\langle \nabla_{X}Y, Z \right\rangle, \quad X, Y, Z \in \frak{X}(M)
∇ ( X , Y , Z ) = ⟨ ∇ X Y , Z ⟩ , X , Y , Z ∈ X ( M )
The Levi-Civita connection ∇ \nabla ∇ , defined as above, is not a tensor since it is not linear with respect to the Y Y Y components.
See Also