logo

Basis Transformation (Coordinate Transformation) of Linear Transformations 📂Linear Algebra

Basis Transformation (Coordinate Transformation) of Linear Transformations

Overview1

Let VV to nn dimensional vector space, and call it vV\mathbf{v} \in V. Let β,β\beta, \beta^{\prime} be the ordered basis of VV. Then, the two coordinates [v]β[\mathbf{v}]_{\beta} and [v]β[\mathbf{v}]_{\beta^{\prime}} of v\mathbf{v} are transformed by the coordinate transformation matrix QQ as follows.

[v]β=Q[v]β [\mathbf{v}]_{\beta} = Q [\mathbf{v}]_{\beta^{\prime}}

Now, suppose a linear transformation T:VVT : V \to V is given. Then, for each ordered basis, there exist matrix representations [T]β\begin{bmatrix} T \end{bmatrix}_{\beta} and [T]β\begin{bmatrix} T \end{bmatrix}_{\beta^{\prime}}. Just like the coordinates of vector v\mathbf{v} of VV are transformed by QQ, these two matrices are also transformed by QQ.

Theorem

Let β,β\beta, \beta^{\prime} be the ordered basis of the nn-dimensional vector space VV, and T:VVT : V \to V be a linear transformation. Let Q=[I]ββQ = \begin{bmatrix} I \end{bmatrix}_{\beta^{\prime}}^{\beta} be the coordinate transformation matrix converting β\beta^{\prime}-coordinates to β\beta-coordinates. Then, the following holds.

[T]β=Q1[T]βQ \begin{bmatrix} T \end{bmatrix}_{\beta^{\prime}} = Q^{-1} \begin{bmatrix} T \end{bmatrix}_{\beta} Q

Explanation

Such two matrices [T]β\begin{bmatrix} T \end{bmatrix}_{\beta^{\prime}} and [T]\begin{bmatrix} T \end{bmatrix} are called similar.

Proof

Lemma

Let V,W,ZV, W, Z be a finite-dimensional vector space, and let α,β,γ\alpha, \beta, \gamma be their respective ordered bases. Also, let T:VWT : V \to W and U:WZU : W \to Z be linear transformations. Then,

[UT]αγ=[U]βγ[T]αβ [UT]_{\alpha}^{\gamma} = [U]_{\beta}^{\gamma}[T]_{\alpha}^{\beta}

By the lemma,

Q[T]β=[I]ββ[T]ββ=[IT]ββ=[TI]ββ=[T]ββ[I]ββ=[T]βQ Q\begin{bmatrix} T \end{bmatrix}_{\beta^{\prime}} = \begin{bmatrix} I \end{bmatrix}_{\beta^{\prime}}^{\beta}\begin{bmatrix} T \end{bmatrix}_{\beta^{\prime}}^{\beta^{\prime}} = \begin{bmatrix} IT \end{bmatrix}_{\beta^{\prime}}^{\beta} = \begin{bmatrix} TI \end{bmatrix}_{\beta^{\prime}}^{\beta} = \begin{bmatrix} T \end{bmatrix}_{\beta}^{\beta} \begin{bmatrix} I \end{bmatrix}_{\beta^{\prime}}^{\beta} = \begin{bmatrix} T \end{bmatrix}_{\beta}Q

Since [QQ is invertible]

[T]β=Q1[T]βQ \begin{bmatrix} T \end{bmatrix}_{\beta^{\prime}} = Q^{-1} \begin{bmatrix} T \end{bmatrix}_{\beta} Q


  1. Stephen H. Friedberg, Linear Algebra (4th Edition, 2002), p112-113 ↩︎