logo

The Relationship between Covariant Derivative and Riemann Curvature Tensor 📂Geometry

The Relationship between Covariant Derivative and Riemann Curvature Tensor

Theorem1

Let f:AR2Mf : A \subset \mathbb{R}^{2} \to M be a parametrized surface. Let (s,t)(s, t) be the standard coordinates of R2\mathbb{R}^{2}. Let V=V(s,t)V = V(s,t) be a vector field following ff. At each point (s,t)(s, t), the following holds:

DtDsVDsDtV=R(fs,ft)V \dfrac{D }{\partial t} \dfrac{D }{\partial s}V - \dfrac{D }{\partial s} \dfrac{D }{\partial t}V = R(\dfrac{\partial f}{\partial s}, \dfrac{\partial f}{\partial t})V

Description

Proof

Choose a coordinate system (U,x)(U, \mathbf{x}) at point pp on the manifold MM of differentiable manifolds. Let {Xi=xi}\left\{ X_{i} = \dfrac{\partial }{\partial x_{i}} \right\} be the basis of the tangent space TpMT_{p}M. And let’s say V=iviXi,vi=vi(s,t)V = \sum_{i}v^{i}X_{i}, v^{i} = v^{i}(s, t). Then, by the properties of the covariant derivative,

DsV=Ds(iviXi)=iviDsXi+ivisXi \dfrac{D }{\partial s}V = \dfrac{D }{\partial s}(\sum_{i} v^{i}X_{i}) = \sum_{i}v^{i}\dfrac{D }{\partial s}X_{i} + \sum_{i} \dfrac{\partial v^{i}}{\partial s}X_{i}

Applying Dt\dfrac{D }{\partial t} again to this gives the following.

Dt(DsV)=Dt(iviDsXi+ivisXi)=iviDtDsXi+ivitDsXi+ivisDtXi+i2vitsXi \begin{align*} \dfrac{D }{\partial t}\left( \dfrac{D }{\partial s}V \right) &= \dfrac{D }{\partial t}\left( \sum_{i}v^{i}\dfrac{D }{\partial s}X_{i} + \sum_{i} \dfrac{\partial v^{i}}{\partial s}X_{i} \right) \\ &= \sum_{i}v^{i}\dfrac{D }{\partial t}\dfrac{D }{\partial s}X_{i} + \sum_{i}\dfrac{\partial v^{i}}{\partial t}\dfrac{D }{\partial s}X_{i} + \sum_{i} \dfrac{\partial v^{i}}{\partial s}\dfrac{D }{\partial t}X_{i} + \sum_{i} \dfrac{\partial^{2} v^{i}}{\partial t\partial s}X_{i} \end{align*}

Calculating Ds(DtV)\dfrac{D }{\partial s}\left( \dfrac{D }{\partial t}V \right) in the same way and subtracting one from the other, it can be seen that the last three terms in the above equation cancel out each other. Therefore,

DtDsVDsDtV=i(viDtDsXiviDsDtXi)=ivi(DtDsXiDsDtXi) \begin{equation} \begin{aligned} \dfrac{D }{\partial t} \dfrac{D }{\partial s}V - \dfrac{D }{\partial s} \dfrac{D }{\partial t}V &= \sum_{i}\left( v^{i}\dfrac{D }{\partial t}\dfrac{D }{\partial s}X_{i} - v^{i}\dfrac{D }{\partial s}\dfrac{D }{\partial t}X_{i} \right) \\ &= \sum_{i}v^{i}\left( \dfrac{D }{\partial t}\dfrac{D }{\partial s}X_{i} - \dfrac{D }{\partial s}\dfrac{D }{\partial t}X_{i} \right) \end{aligned} \label{1} \end{equation}

Now, let’s say p=f(s,t)=x(x1(s,t),,xn(s,t))p = f(s,t) = \mathbf{x}(x_{1}(s,t), \dots, x_{n}(s,t)). Calculating fs\dfrac{\partial f}{\partial s},

fs:=df(s)=[x1sx1txnsxnt][10]=[x1sxns]=xjsXj \begin{align*} \dfrac{\partial f}{\partial s} &:= df(\dfrac{\partial }{\partial s}) \\ &= \begin{bmatrix} \dfrac{\partial x_{1}}{\partial s} & \dfrac{\partial x_{1}}{\partial t} \\ \vdots & \vdots \\ \dfrac{\partial x_{n}}{\partial s} & \dfrac{\partial x_{n}}{\partial t}\end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \dfrac{\partial x_{1}}{\partial s} \\ \vdots \\ \dfrac{\partial x_{n}}{\partial s} \end{bmatrix} = \dfrac{\partial x_{j}}{\partial s}X_{j} \end{align*}

Similarly, ft=xktXk\dfrac{\partial f}{\partial t} = \dfrac{\partial x_{k}}{\partial t}X_{k}. Now, calculating DtDsXi\dfrac{D }{\partial t}\dfrac{D }{\partial s}X_{i},

DsXi=f/sXi=(xj/s)XjXi=xjsXjXi \dfrac{D }{\partial s}X_{i} = \nabla_{\partial f/\partial s}X_{i} = \nabla_{(\partial x_{j}/\partial s)X_{j}}X_{i} = \dfrac{\partial x_{j}}{\partial s}\nabla_{X_{j}}X_{i}

And

DtDsXi=Dt(xjsXjXi)=2xjtsXjXi+xjsf/t(XjXi)=2xjtsXjXi+xjs(xk/t)Xk(XjXi)=2xjtsXjXi+xjsxktXkXjXi \begin{align*} \dfrac{D }{\partial t}\dfrac{D }{\partial s}X_{i} &= \dfrac{D }{\partial t}\left( \dfrac{\partial x_{j}}{\partial s}\nabla_{X_{j}}X_{i} \right) \\ &= \dfrac{\partial^{2} x_{j}}{\partial t\partial s}\nabla_{X_{j}}X_{i} + \dfrac{\partial x_{j}}{\partial s}\nabla_{\partial f / \partial t}(\nabla_{X_{j}}X_{i}) \\ &= \dfrac{\partial^{2} x_{j}}{\partial t\partial s}\nabla_{X_{j}}X_{i} + \dfrac{\partial x_{j}}{\partial s}\nabla_{(\partial x_{k} / \partial t})X_{k}(\nabla_{X_{j}}X_{i}) \\ &= \dfrac{\partial^{2} x_{j}}{\partial t\partial s}\nabla_{X_{j}}X_{i} + \dfrac{\partial x_{j}}{\partial s}\dfrac{\partial x_{k}}{\partial t}\nabla_{X_{k}}\nabla_{X_{j}}X_{i} \end{align*}

Therefore, the following is obtained.

DtDsXiDsDtXi=xjsxkt(XkXjXiXjXkXi) \dfrac{D }{\partial t}\dfrac{D }{\partial s}X_{i} - \dfrac{D }{\partial s}\dfrac{D }{\partial t}X_{i} = \dfrac{\partial x_{j}}{\partial s}\dfrac{\partial x_{k}}{\partial t}\left( \nabla_{X_{k}}\nabla_{X_{j}}X_{i} - \nabla_{X_{j}}\nabla_{X_{k}}X_{i}\right)

However, since [Xi,Xj]=0[X_{i}, X_{j}]=0, the Riemann curvature is

R(Xj,Xk)Xi=XkXjXiXjXkXi+[Xj,Xk]Xi=XkXjXiXjXkXi R(X_{j}, X_{k})X_{i} = \nabla_{X_{k}}\nabla_{X_{j}}X_{i} - \nabla_{X_{j}}\nabla_{X_{k}}X_{i} + \nabla_{[X_{j}, X_{k}]}X_{i} = \nabla_{X_{k}}\nabla_{X_{j}}X_{i} - \nabla_{X_{j}}\nabla_{X_{k}}X_{i}

And the above equation is,

DtDsXiDsDtXi=xjsxktR(Xj,Xk)Xi \dfrac{D }{\partial t}\dfrac{D }{\partial s}X_{i} - \dfrac{D }{\partial s}\dfrac{D }{\partial t}X_{i} = \dfrac{\partial x_{j}}{\partial s}\dfrac{\partial x_{k}}{\partial t}R(X_{j}, X_{k})X_{i}

By substituting this into (1)\eqref{1}, since RR is linear,

DtDsVDsDtV=ivi(DtDsXiDsDtXi)=ivixjsxktR(Xj,Xk)Xi=iR(xjsXj,xktXk)viXi=iR(fs,ft)V \begin{align*} \dfrac{D }{\partial t} \dfrac{D }{\partial s}V - \dfrac{D }{\partial s} \dfrac{D }{\partial t}V &= \sum_{i}v^{i}\left( \dfrac{D }{\partial t}\dfrac{D }{\partial s}X_{i} - \dfrac{D }{\partial s}\dfrac{D }{\partial t}X_{i} \right) \\ &= \sum_{i}v^{i}\dfrac{\partial x_{j}}{\partial s}\dfrac{\partial x_{k}}{\partial t}R(X_{j}, X_{k})X_{i} \\ &= \sum_{i}R(\dfrac{\partial x_{j}}{\partial s}X_{j}, \dfrac{\partial x_{k}}{\partial t}X_{k})v^{i}X_{i} \\ &= \sum_{i}R(\dfrac{\partial f}{\partial s}, \dfrac{\partial f}{\partial t})V \end{align*}


  1. Manfredo P. Do Carmo, Riemannian Geometry (Eng Edition, 1992), p98-99 ↩︎