logo

Scalar Curvature of Differential Manifolds 📂Geometry

Scalar Curvature of Differential Manifolds

Definition1

Riesz Representation Theorem

Let (H,,)\left( H, \left\langle \cdot,\cdot \right\rangle \right) be an inner product space. For linear functionals fHf \in H^{ \ast } and xH\mathbf{x} \in H on HH, there exists a unique wH\mathbf{w} \in H that satisfies f(x)=w,xf ( \mathbf{x} ) = \left\langle \mathbf{w} , \mathbf{x} \right\rangle.

Let MM be a differentiable manifold. Let TpMT_{p}M be the tangent space at point pMp\in M. Now, for a fixed XTpMX \in T_{p}M, consider a linear functional Ric(X,)\Ric(X, \cdot) on TpMT_{p}M. If Ric\Ric is the Ricci curvature, then by the Riesz Representation Theorem, there exists a unique ZZ that satisfies the following in terms of YY and Ric\Ric.

Ric(X,Y)=g(Z,Y) \Ric (X, Y) = g\left( Z, Y \right)

Now, let us define K:TpTpMK : T_{p} \to T_{p}M for such X,ZX, Z as follows.

K(X)=Z K(X) = Z

Then

Ric(X,Y)=g(K(X),Y) \Ric (X, Y) = g\left( K(X), Y \right)

and the scalar curvature K:MR by K(p)=KpK : M \to \mathbb{R} \text{ by } K(p) = K_{p} at point pp is defined as follows.

Kp=Trace of K K_{p} = \text{Trace of } K

Explanation

Let {Xi=xi}\left\{ X_{i} = \dfrac{\partial }{\partial x_{i}}\right\} be the basis of TpMT_{p}M. Then, by the trace inner product formula,

Kp=tr(K)=g(K(Xi),Xj)gij=Ric(Xi,Xj)gij=Rikjkgij K_{p} = \tr(K) = g(K(X_{i}), X_{j})g^{ij} = \Ric (X_{i}, X_{j}) g^{ij} = R_{ikj}^{k}g^{ij}

Since Rikjk=Rikjsδsk=Rikjsgslglk=RikjlglkR_{ikj}^{k} = R_{ikj}^{s}\delta_{s}^{k} = R_{ikj}^{s}g_{sl}g^{lk} = R_{ikjl}g^{lk} is so,

Kp=Rikjkgij=Rikjlglkgij K_{p} = R_{ikj}^{k}g^{ij} = R_{ikjl}g^{lk}g^{ij}

Therefore, just as the Ricci curvature is the average of the second and fourth components of the Riemann curvature, the scalar curvature is the average over all components of the Riemann curvature. Especially, if {Zi}\left\{ Z_{i} \right\} are the orthonormal basis of TpMT_{p}M, then since gij=δijg^{ij} = \delta_{ij},

Kp=Ric(Zi,Zj)δij=Ric(Zi,Zi)=R(Zi,Zj,Zi,Zj) K_{p} = \Ric(Z_{i}, Z_{j})\delta_{ij} = \Ric(Z_{i}, Z_{i}) = R(Z_{i}, Z_{j}, Z_{i}, Z_{j})

holds, and this is equivalent to the average of the sectional curvature K(Zi,Zj)K(Z_{i}, Z_{j}).


  1. Manfredo P. Do Carmo, Riemannian Geometry (Eng Edition, 1992), p97-98 ↩︎